Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 330-344 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the method of initial functions (MIF) is used to solve the problem of bending an orthotropic plate clamped along all four sides, under the influence of a normal load uniformly distributed over its surface. The solution is obtained in the form of an exponential series with unknown coefficients. The algorithm of the method is such that on two opposite sides the boundary conditions (equality to zero of displacements and angles of rotation) are satisfied exactly, while on a pair of two other opposite sides the boundary conditions are satisfied with an arbitrary degree of accuracy by the collocation method. All studies were carried out using the Maple analytical computing system. This system allows you to perform calculations with an arbitrary mantissa in the representation of real numbers. Calculations with a long mantissa overcome one of the main disadvantages of the MIF: the computational instability of its algorithm, which arises under certain parameters of the problem. The computational stability of the obtained solution is investigated, as well as the stress-strain state in the neighbourhood of the corner points of the plate. It is shown that the moments and shear forces tend to zero when approaching the corners of the plate with a single change in sign.
Keywords: orthotropic plate, bending of a thin plate, clamped plate, method of initial functions, computer algebra, Maple.
@article{VSPUI_2021_17_4_a1,
     author = {D. P. Goloskokov and A. V. Matrosov},
     title = {Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {330--344},
     year = {2021},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a1/}
}
TY  - JOUR
AU  - D. P. Goloskokov
AU  - A. V. Matrosov
TI  - Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 330
EP  - 344
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a1/
LA  - ru
ID  - VSPUI_2021_17_4_a1
ER  - 
%0 Journal Article
%A D. P. Goloskokov
%A A. V. Matrosov
%T Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 330-344
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a1/
%G ru
%F VSPUI_2021_17_4_a1
D. P. Goloskokov; A. V. Matrosov. Method of initial functions in analyses of the bending of a thin orthotropic plate clamped along the contour. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 330-344. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a1/

[1] Meleshko V. V., “Selected topics in the history of the two-dimensional biharmonic problem”, Applied Mechanics Rev., 56:1 (2003), 33–85 | DOI | MR

[2] Ramachandra Rao B. S., Narasimham G. L., “Eigenfunction analysis for bending of clamped rectangular orthotropic plates”, Intern. Journal of Solids Structures, 9 (1973), 481–493 | DOI

[3] Li R., Zhong Y., Tian B., Liu Yu., “On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates”, Applied Mathematics Letters, 22 (2009), 1821–1827 | DOI | MR | Zbl

[4] An C., Gu J., Su J., “Exact solution of bending problem of clamped orthotropic rectangular thin plates”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38:2 (2016), 601–607 | DOI

[5] Dalaei M., Kerr A. D., “Analysis of clamped rectangular orthotropic plates subjected to a uniform lateral load”, Intern. Journal of Mechanical Sciences, 37:5 (1995), 527–535 | DOI | Zbl

[6] Eburlitu F., Alatancang L., “Analytical bending solutions of clamped orthotropic rectangular thin plates with the symplectic superposition method”, Applied Mathematics and Mechanics, 39:3 (2018), 311–323

[7] Mbakogu F. C., Pavlovic M. N., “Bending of clamped orthotropic rectangular plates: A variational symbolic solution”, Computers and Structures, 77:2 (2000), 117–128 | DOI

[8] Dalaei M., Kerr A. D., “Analysis of clamped rectangular orthotropic plates subjected to a uniform lateral load”, Intern. Journal of Mechanical Sciences, 37:5 (1995), 527–535 | DOI | Zbl

[9] Meleshko V. V., Gomilko A. M., Gourjii A. A., “Normal reactions in a clamped elastic rectangular plate”, Journal of Engineering Mathematics, 40 (2001), 377–398 | DOI | MR | Zbl

[10] Meleshko V. V., “Biharmonic problem for a rectangle: history and modernity”, Math. methods and phys.-mech. fields, 47:3 (2004), 45–68 (In Russian) | MR | Zbl

[11] Agaryov V. A., Method of initial functions for two-dimensional boundary value problems of elasticity theory, Publ. House AS UkrSSR, Kiev, 1963, 204 pp. (In Russian) | MR

[12] Lur'e A. I., Three dimensional problems of theory of elasticity, Willey Publ, New York, 1964, 491 pp. | MR | MR | Zbl

[13] Matrosov A. V., “Computational peculiarities of the method of initial functions”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2019, 37–51

[14] Suratov V. A., Matrosov A. V., “The method of initial functions in analysing a clamped plate”, Control Processes and Stability, 4(20):1 (2017), 238–244 (In Russian)

[15] Goloskokov D. P., Matrosov A. V., “Approximate analytical solutions in the analysis of thin elastic plates”, AIP Conference Proceedings, 2018, 070012 | DOI

[16] Matrosov A. V., Suratov V. A., “Stress-strain state in the corner points of a clamped plate under uniformly distributed normal load”, Materials Physics and Mechanics, 36:1 (2018), 124–146

[17] Matrosov A. V., “A numerical-analytical decomposition method in analyses of complex structures”, 2014 Intern. Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA-2014), 2014, 104–105

[18] Kovalenko M. D., Menshova I. V., Kerzhaev A. P., Yu G., “A boundary value problem in the theory of elasticity for a rectangle: exact solutions”, Zeitschrift fur Angewandte Mathematik und Physik, 71:6 (2020), 199 | DOI | MR | Zbl

[19] Matrosov A. V., “A superposition method in analysis of plane construction”, 2015 Intern. Conference on “Stability and Control Processes” in memory of V. I. Zubov (SCP–2015), 2015, 7342156, 414–416

[20] Matrosov A. V., Kovalenko M. D., Menshova I. V., Kerzhaev A. P., “Method of initial functions and integral Fourier transform in some problems of the theory of elasticity”, Zeitschrift fur Angewandte Mathematik und Physik, 71:1 (2020), 24 | DOI | MR | Zbl

[21] Kovalenko M. D., Abrukov D. A., Menshova I. V., Kerzhaev A. P., Yu G., “Exact solutions of boundary value problems in the theory of plate bending in a half-strip: basics of the theory”, Zeitschrift fur Angewandte Mathematik und Physik, 70:4 (2019), 98 | DOI | MR | Zbl

[22] Goloskokov D. P., Matrosov A. V., “Comparison of two analytical approaches to the analysis of grillages”, 2015 Intern. Conference on "Stability and Control Processes" in memory of V. I. Zubov (SCP–2015), 2015, 7342169, 382–385

[23] Matrosov A. V., Shirunov G. N., “Analyzing thick layered plates under their own weight by the method of initial functions”, Materials Physics and Mechanics, 31:1–2 (2017), 36–39

[24] Matrosov A. V., Shirunov G. N., “Numerical-analytical computer modeling of a clamped isotropic thick plate”, 2014 Intern. Conference on Computer Technologies in Physical and Engineering Applications (ICCTPEA–2014), 2014, 6893300, 96 pp.

[25] Timoshenko S. P., Woinowsky-Krieger S., Theory of plates and shells, $2^{\rm nd}$ ed., McGraw-Hill Publ, New York, 1987, 580 pp. | MR

[26] Kovalenko M. D., “On a property of the biorthogonal expansions over homogeneous solutions”, Doklady Akademii Nauk, 352:2 (1997), 193–195 | MR