Modelling and design of permanent magnet multipoles for beam transport and focusing. I. Selection of optimal design and parameters
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 313-329 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The design and specification choices are described for a PM quadrupole used to enable beam transport in a cyclotron. First an analytic study with a simplified 2D model is performed to give initial values for magnet configuration and performance. Characteristics of PM blocks and cylinders are analysed. Then a 3D parametrized model is used to solve the direct magnetostatic problem and accurately define quad specifications. Simulations are carried out with KOMPOT electromagnetic code utilizing the differential formulation. The regularization method is applied to solve the inverse problem. Magnetic characteristics, dimensions and shapes of the PM units and iron parts are determined in order to reach the specified field gradient. Possible correction of the resulting the ideal specification is discussed with respect to additional constraints put by practical implementation. Candidate PM materials are proposed. Simulated field maps are presented. The method described may serve as a basis for virtual prototyping and be integrated into end-to-end design and construction of magnet systems.
Mots-clés : permanent magnet, quadrupole, simulation.
Keywords: beam transport, analytical model, numerical model, direct and inverse problems, computed code
@article{VSPUI_2021_17_4_a0,
     author = {V. M. Amoskov and V. N. Vasiliev and E. I. Gapionok and G. G. Gulbekyan and N. S. Edamenko and I. A. Ivanenko and N. Yu. Kazarinov and I. V. Kalagin and M. V. Kaparkova and V. P. Kukhtin and E. A. Lamzin and A. A. Makarov and A. N. Nezhentzev and D. A. Ovsyannikov and D. A. Ovsyannikov (Jr.) and N. F. Osipov and I. Yu. Rodin and S. E. Sychevsky and A. A. Firsov},
     title = {Modelling and design of permanent magnet multipoles for beam transport and focusing. {I.} {Selection} of optimal design and parameters},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {313--329},
     year = {2021},
     volume = {17},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a0/}
}
TY  - JOUR
AU  - V. M. Amoskov
AU  - V. N. Vasiliev
AU  - E. I. Gapionok
AU  - G. G. Gulbekyan
AU  - N. S. Edamenko
AU  - I. A. Ivanenko
AU  - N. Yu. Kazarinov
AU  - I. V. Kalagin
AU  - M. V. Kaparkova
AU  - V. P. Kukhtin
AU  - E. A. Lamzin
AU  - A. A. Makarov
AU  - A. N. Nezhentzev
AU  - D. A. Ovsyannikov
AU  - D. A. Ovsyannikov (Jr.)
AU  - N. F. Osipov
AU  - I. Yu. Rodin
AU  - S. E. Sychevsky
AU  - A. A. Firsov
TI  - Modelling and design of permanent magnet multipoles for beam transport and focusing. I. Selection of optimal design and parameters
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 313
EP  - 329
VL  - 17
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a0/
LA  - ru
ID  - VSPUI_2021_17_4_a0
ER  - 
%0 Journal Article
%A V. M. Amoskov
%A V. N. Vasiliev
%A E. I. Gapionok
%A G. G. Gulbekyan
%A N. S. Edamenko
%A I. A. Ivanenko
%A N. Yu. Kazarinov
%A I. V. Kalagin
%A M. V. Kaparkova
%A V. P. Kukhtin
%A E. A. Lamzin
%A A. A. Makarov
%A A. N. Nezhentzev
%A D. A. Ovsyannikov
%A D. A. Ovsyannikov (Jr.)
%A N. F. Osipov
%A I. Yu. Rodin
%A S. E. Sychevsky
%A A. A. Firsov
%T Modelling and design of permanent magnet multipoles for beam transport and focusing. I. Selection of optimal design and parameters
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 313-329
%V 17
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a0/
%G ru
%F VSPUI_2021_17_4_a0
V. M. Amoskov; V. N. Vasiliev; E. I. Gapionok; G. G. Gulbekyan; N. S. Edamenko; I. A. Ivanenko; N. Yu. Kazarinov; I. V. Kalagin; M. V. Kaparkova; V. P. Kukhtin; E. A. Lamzin; A. A. Makarov; A. N. Nezhentzev; D. A. Ovsyannikov; D. A. Ovsyannikov (Jr.); N. F. Osipov; I. Yu. Rodin; S. E. Sychevsky; A. A. Firsov. Modelling and design of permanent magnet multipoles for beam transport and focusing. I. Selection of optimal design and parameters. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 4, pp. 313-329. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_4_a0/

[1] Kapchinsky I. M., Skachkov V. S., Artemov V. S. et al., “Experience of employing nonsalient-pole PM quads in the linear particle accelerator I-2”, Proceedings of All-Union Conference by accelerating for charged particles (Dubna, October 16–18, 1984), v. 2, Joint Inst. for Nucl. Research, Dubna, 1984, 57–60 (In Russian)

[2] Mitrofanov S., Apel P., Bashevoy V. et al., “The DC130 project: new multipurpose applied science facility for FLNR”, Proceedings of 14th Intern. Conference on Heavy Ion Accelerator Technology (Lanzhou, China, 2018), 122–124

[3] Kazarinov N., Apel P., Bekhterev V. et al., “Conceptual design of FLNR JINR radiation facility based on DC130 cyclotron”, Proceedings of 61 Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams (Daejeon, Korea, 2018), 2018, 324–328

[4] Thome R. J., Tarrh J. M., MHD and fusion magnets: field and force design concepts, Wiley Publ, New York, 1982, 249 pp.

[5] Belyakov V. A., Sytchevsky S. E., “Aspects of EM field simulations for designing, analyzing and optimizing the tokamak-type fusion reactors”, Proceedings of Russian Academy of Sciences. Energetics, 2014, no. 1, 141–149 (In Russian) | MR

[6] Amoskov V. M., Arslanova D. N., Bazarov A. M. et al., “Adaptation computation technology of modeling of thermonuclear syntesis machines for analysis and optimization of magnetic suspension of levitating vehicle”, VANT. Series Thermonuclear syntheses, 37:4 (2014), 84–95 (In Russian)

[7] Amoskov V. M., Belov A. V., Belyakov V. A. et al., “Computation technology based on KOMPOT and KLONDIKE codes for magneto static simulations in tokamaks”, Plasma Devices Oper., 16 (2008), 89–103 | DOI

[8] Amoskov V. M., Belov A. V., Belyakov V. A. et al., “Magnetic model MMTC-2.2 of ITER tokamak complex”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 5–21 | DOI

[9] Batygin V. V., Toptygin I. N., Problems in electrodynamics, Academic Press, London–New York, 1964, 587 pp. | MR | MR

[10] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Halsted Press, New York, 1977, 288 pp. | MR

[11] Preobrazhenskiy A. A., Bishard E. G., Magnetic materials and elements, Vysshaia shkola Publ, M., 1986, 352 pp. (In Russian)

[12] Neiman L. R., Demirchan K. S., Theoretical foundations of electrical engineering, Textbook for high schools, Energiya Publ, Leningrad, 1975, 407 pp. (In Russian)