Construction of reachability and controllability sets in a special linear control problem
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 294-308
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the problem of constructing reachability and controllability sets for a control problem. The motion of an object is described by a linear system of ordinary differential equations, and control is selected from the class of piecewise-constant functions. Straight boundaries are also set on the controls. The article provides definitions of reachability and controllability sets. It is shown that the problems of constructing these sets are equivalent and can be reduced to the problem of linear mapping of a multidimensional cube. The properties of these sets are also given. In addition, the existing approaches to solving the problem are analyzed. Since they are all too computationally complex, the question of creating a more efficient algorithm arises. The work proposes an algorithm for constructing \newpage the required sets as a system of linear inequalities. A proof of the theorem showing the correctness of the algorithm is provided. The complexity of the presented approach is estimated.
Keywords: control, optimal control, piecewise-constant control, reachability set, controllability set, linear mapping, Fourier — Motzkin elimination.
@article{VSPUI_2021_17_3_a6,
     author = {A. S. Popkov},
     title = {Construction of reachability and controllability sets in a special linear control problem},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {294--308},
     year = {2021},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a6/}
}
TY  - JOUR
AU  - A. S. Popkov
TI  - Construction of reachability and controllability sets in a special linear control problem
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 294
EP  - 308
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a6/
LA  - ru
ID  - VSPUI_2021_17_3_a6
ER  - 
%0 Journal Article
%A A. S. Popkov
%T Construction of reachability and controllability sets in a special linear control problem
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 294-308
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a6/
%G ru
%F VSPUI_2021_17_3_a6
A. S. Popkov. Construction of reachability and controllability sets in a special linear control problem. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 294-308. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a6/

[1] Balashevich N. V., Gabasov R., Kirillova F. M., “Numerical methods of program and positional optimization of linear control systems”, Journal of Computational Mathematics and Mathematical Physics, 40:6 (2000), 838–859 (In Russian) | Zbl

[2] Rawlings J. B., Mayne D. Q., Model predictive control: Theory design, Nob Hill Publishing, Madison, WI, 2009, 533 pp.

[3] Grüne L., Pannek J., Nonlinear model predictive control: Theory and algorithms, Communication and Control Engineering, 2nd ed., Springer International Publishing, Cham, 2017, 473 pp.

[4] Ponomarev A. A., “Suboptimal control construction for the model predictive controller”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2014, no. 3, 141–153 (In Russian)

[5] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishechenko E. F., The mathematical theory of optimal processes, Nauka Publ, M., 1969, 384 pp. (In Russian)

[6] Formalskii A. M., Controllability and stability of systems with restricted control resources, Nauka Publ, M., 1974, 368 pp. (In Russian)

[7] Chernousko F. L., Estimation of phase states of dynamical systems. Ellipsoid method, Nauka Publ, M., 1988, 319 pp. (In Russian)

[8] Ekimov A. V., Balykina Yu. E., Svirkin M. V., “On the estimation of the attainability set of nonlinear control systems”, AIP Conference Proceedings, 1648 (2015), 450008 | DOI

[9] Dantzig G. B., Eaves B. C., “Fourier — Motzkin elimination and its dual”, J. Combinatorial Theory. Series A, 14 (1973), 288–297 | DOI | Zbl

[10] Popkov A. S., “Application of the adaptive method for optimal stabilization of a nonlinear object”, 2016 International Conference “Stability and Oscillations of Nonlinear Control Systems” (Pyatnitskiy's Conference), 2016, 1–3

[11] Popkov A. S., Smirnov N. V., Smirnova T. E., “On modification of the positional optimization method for a class of nonlinear systems”, ACM International Conference. Proceeding Series, 2018, 46–51