An example of an internal function for the SPONGE scheme
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 287-293
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article discusses a new version of the internal function underlying the perspective modern scheme for constructing cryptographic hash functions Sponge (cryptographic sponge). The considered example of an internal function is similar to the Keccak permutation, but it has a number of main differences. The inner function operates on a $2048$-bit state $S$, which can be viewed as a three-dimensional bit array of $4 \times 8 \times 64$ size. The structure of the internal function is made up of $5$ transformations similar to Keccak. However, firstly, in this example, instead of a $5$-bit $S$-box, an $8$-bit one is used. In this regard, the parameters of the three-dimensional representation of the state have been changed. Secondly, instead of a linear feedback shift register, a dictionary shift register with ring carry feedback is used to generate round constants. The properties of these transformations are analyzed in the work.
Keywords: information security, cryptography, hash function, symmetric encryption.
Mots-clés : Sponge modification
@article{VSPUI_2021_17_3_a5,
     author = {R. M. Ospanov and Ye. N. Seitkulov and N. M. Sissenov and B. B. Yergaliyeva},
     title = {An example of an internal function for the {SPONGE} scheme},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {287--293},
     year = {2021},
     volume = {17},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a5/}
}
TY  - JOUR
AU  - R. M. Ospanov
AU  - Ye. N. Seitkulov
AU  - N. M. Sissenov
AU  - B. B. Yergaliyeva
TI  - An example of an internal function for the SPONGE scheme
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 287
EP  - 293
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a5/
LA  - ru
ID  - VSPUI_2021_17_3_a5
ER  - 
%0 Journal Article
%A R. M. Ospanov
%A Ye. N. Seitkulov
%A N. M. Sissenov
%A B. B. Yergaliyeva
%T An example of an internal function for the SPONGE scheme
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 287-293
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a5/
%G ru
%F VSPUI_2021_17_3_a5
R. M. Ospanov; Ye. N. Seitkulov; N. M. Sissenov; B. B. Yergaliyeva. An example of an internal function for the SPONGE scheme. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 287-293. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a5/

[1] Bertoni G., Daemen J., Peeters M., Assche G. V., “Sponge functions”, Ecrypt Hash Workshop (Barcelona, 2007), 22 pp. (accessed: November 15, 2020) http://keccak.team/files/SpongeFunctions.pdf

[2] Bertoni G., Daemen J., Peeters M., Van Assche G., Cryptographic sponge functions. Version 0.1, January 14, 2011 (accessed: November 15, 2020) http://keccak.team/files/CSF-0.1.pdf

[3] Bertoni G., Daemen J., Peeters M., Van Assche G., The Keccak reference. SHA-3 competition (round 3), 2011 (accessed: November 15, 2020) http://keccak.team/sponge_duplex.html

[4] Arnault F., Berger T. P., Lauradoux C., Minier M., Pousse B., A new approach for FCSRs, Cryptology ePrint Archive. Report 2009/167, 2009 (accessed: November 15, 2020) http://eprint.iacr.org/2009/167 | Zbl

[5] Nizam Chew L. C., Ismail E. S., “$S$-box construction based on linear fractional transformation and permutation function”, Symmetry, 12 (2020), 826 | DOI

[6] Zahid A. H., Arshad M. J., “An innovative design of substitution-boxes using cubic polynomial mapping”, Symmetry, 11:437 (2019) | DOI

[7] Altaleb A., Saeed M. S., Hussain I., Aslam M., “An algorithm for the construction of substitution box for block ciphers based on projective general linear group”, AIP Advances, 7 (2017), 035116 | DOI

[8] Hussain S., Jamal S. S., Shah T., Hussain I., “A power associative loop structure for the construction of non-linear components of block cipher”, IEEE Access, 8 (2020), 123492–123506 | DOI

[9] Gao W., Idrees B., Zafar S., Rashid T., “Construction of nonlinear component of block cipher by action of modular group $PSL(2, Z)$ on projective line $PL(GF(2^8))$”, IEEE Access, 8 (2020), 136736–136749 | DOI

[10] Kazymyrov O., Methods and tools to generate nonlinear substitution boxes for symmetric cryptographic algorithms, Diss. PhD in Technics, Kharkiv National University of Radio Electronics, Kharkiv, 2013, 190 pp. (In Russian)

[11] Rodinko M., Oliynykov R., Gorbenko Y., “Optimization of the high nonlinear $S$-boxes generation method”, Tatra Mountains Mathematical Publ., 70, no. 1, Mathematical Institute, Slovak Academy of Sciences, Bratislava, 2017, 93–105 | DOI | Zbl

[12] Ivanov G., Nikolov N., Nikova S., “Cryptographically strong $S$-boxes generated by modified immune algorithm”, Cryptography and Information Security in the Balkans, BalkanCryptSec 2015, Lecture Notes in Computer Science, 9540, eds. E. Pasalic, L. Knudsen, Springer, Cham, 2016, 31–42 | DOI | Zbl

[13] Gorbenko I., Kuznetsov A., Gorbenko Y., Pushkar'ov A., Kotukh Y., Kuznetsova K., “Random $S$-boxes generation methods for symmetric cryptography”, IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (Lviv, Ukraine, 2019), 947–950

[14] Easttom C., “A generalized methodology for designing non-linear elements in symmetric cryptographic primitives”, IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC) (Las Vegas, NV, 2018), 2018, 444–449