Point control of a differential-difference system with distributed parameters on the graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 277-286 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the problem of point control of the differential-difference equation with distributed parameters on the graph in the class of summable functions. The differential-difference system is closely related to the evolutionary differential system and moreover the properties of the differential system are preserved. This connection is established by the universal method of semi-discretization in a time variable for a differential system, which provides an effective tool in order to find conditions for unique solvability and continuity on the initial data for the differential-difference system. For this differential-difference system, a special case of the optimal control problem is studied: the problem of point control action on the controlled differential-difference system is considered by the control, concentrated at all internal nodes of the graph. At the same time, the restrictive set of permissible controls is set by the means of conditions depending on the nature of the applied tasks. In this case, the controls are concentrated at the end points of the edges adjacent to each inner node of the graph. This is a characteristic feature of the study presented, quite often used in practice when building a mechanism for managing the processes of transportation of different kinds of masses over network media. The study essentially uses the conjugate state of the system and the conjugate system for a differential-difference system — obtained ratios that determine optimal point control. The obtained results underlie the analysis of optimal control problems for differential systems with distributed parameters on the graph, which have interesting analogies with multi-phase problems of multidimensional hydrodynamics.
Keywords: differential-difference system, conjugate system, oriented graph, optimal point control.
@article{VSPUI_2021_17_3_a4,
     author = {V. V. Provotorov and S. M. Sergeev and V. N. Hoang},
     title = {Point control of a differential-difference system with distributed parameters on the graph},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {277--286},
     year = {2021},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a4/}
}
TY  - JOUR
AU  - V. V. Provotorov
AU  - S. M. Sergeev
AU  - V. N. Hoang
TI  - Point control of a differential-difference system with distributed parameters on the graph
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 277
EP  - 286
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a4/
LA  - en
ID  - VSPUI_2021_17_3_a4
ER  - 
%0 Journal Article
%A V. V. Provotorov
%A S. M. Sergeev
%A V. N. Hoang
%T Point control of a differential-difference system with distributed parameters on the graph
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 277-286
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a4/
%G en
%F VSPUI_2021_17_3_a4
V. V. Provotorov; S. M. Sergeev; V. N. Hoang. Point control of a differential-difference system with distributed parameters on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 277-286. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a4/

[1] Provotorov V. V., Provotorova E. N., “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In Russian) | DOI

[2] Provotorov V. V., Provotorova E. N., “Optimal control of the linearized Navier — Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 | DOI

[3] Provotorov V. V., “Boundary control of a parabolic system with delay and distributed parameters on the graph”, International Conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (St. Petersburg, Russia, 2015), 126–128

[4] Podvalny S. L., Provotorov V. V., “Starting control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)

[5] Provotorov V. V., Sergeev S. M., Hoang V. N., “Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:4 (2020), 402–414 | DOI

[6] Zhabko A. P., Shindyapin A. I., Provotorov V. V., “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 | DOI

[7] Podvalny S. L., Provotorov V. V., Podvalny E. S., “The controllability of parabolic systems with delay and distributed parameters on the graph”, Procedia Computer Sciense, 103 (2017), 324–330 | DOI

[8] Volkova A. S., Provotorov V. V., “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics, 58:3 (2014), 1–13 | DOI | Zbl

[9] Provotorov V. V., “Expansion of eigenfunctions of Sturm — Liouville problem on astar graph”, Russian Mathematics, 3 (2008), 45–57 (In Russian) | DOI | Zbl

[10] Zhabko A. P., Provotorov V. V., Balaban O. R., “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187–198 | DOI

[11] Provotorov V. V., Sergeev S. M., Part A. A., “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 107–117 | DOI

[12] Lions J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires [Some methods of solving non-linear boundary value problems], Dunod-Gauthier-Villars Publ, Paris, 1969, 554 pp. (In French); Rus. ed.: Lions J.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir Publ., M., 1972, 587 pp.

[13] Alexandrova I. V., Zhabko A. P., “A new LKF approach to stability analysis of linear systems with uncertain delays”, Automatica, 91 (2018), 173–178 | DOI | Zbl

[14] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397

[15] Aleksandrov A., Aleksandrova E., Zhabko A., “Asymptotic stability conditions of solutions for nonlinear multiconnected time-delay systems”, Circuits Systems and Signal Processing, 35:10 (2016), 3531–3554 | DOI | Zbl

[16] Karelin V. V., “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)

[17] Karelin V. V., Bure V. M., Svirkin M. V., “The generalized model of information dissemination in continuous time”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 74–80 (In Russian) | DOI

[18] Veremey E. I., Sotnikova M. V., “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (In Russian)

[19] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “Existence of periodic modes in automatic control system with a three-position relay”, Intern. Journal Control, 93:4 (2020), 763–770 | DOI | Zbl

[20] Kamachkin A. M., Potapov D. K., Yevstafyeva V. V., “On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | Zbl

[21] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI

[22] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of nonlinear initial boundary value problem with distributed parameters in the netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI

[23] Krasnov S., Zotova E., Sergeev S., Krasnov A., Draganov M., “Stochastic algorithms in multimodal 3PL segment for the digital environment”, IOP Conference. Series Materials Science and Engineering, 618, conference 1 (2019) | DOI

[24] Krasnov S., Sergeev S., Zotova E., Grashchenko N., “Algorithm of optimal management for the efficient use of energy resources”, E3S Web of Conferences, 110 (2019), 02052 | DOI

[25] Golosnoy A. S., Provotorov V. V., Sergeev S. M., Raikhelgauz L. B., Kravets O. Ja., “Software engineering math for network applications”, Journal of Physics. Conferences Series, 1399:4 (2019), 044047 | DOI