Digital signature scheme on the $2 \times 2$ matrix algebra
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 254-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the structure of the $2\times2$ matrix algebra set over a ground finite field $GF(p)$. It is shown that this algebra contains three types of commutative subalgebras of order $p^2,$ which differ in the value of the order of their multiplicative group. Formulas describing the number of subalgebras of every type are derived. A new post-quantum digital signature scheme is introduced based on a novel form of the hidden discrete logarithm problem. The scheme is characterized in using scalar multiplication as an additional operation masking the hidden cyclic group in which the basic exponentiation operation is performed when generating the public key. The advantage of the developed signature scheme is the comparatively high performance of the signature generation and verification algorithms as well as the possibility to implement a blind signature protocol on its base.
Keywords: digital signature, post-quantum cryptoscheme, blind signature, hidden logarithm problem, finite associative algebra
Mots-clés : matrix algebra.
@article{VSPUI_2021_17_3_a2,
     author = {N. A. Moldovyan and A. A. Moldovyan},
     title = {Digital signature scheme on the $2 \times 2$ matrix algebra},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {254--261},
     year = {2021},
     volume = {17},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a2/}
}
TY  - JOUR
AU  - N. A. Moldovyan
AU  - A. A. Moldovyan
TI  - Digital signature scheme on the $2 \times 2$ matrix algebra
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 254
EP  - 261
VL  - 17
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a2/
LA  - en
ID  - VSPUI_2021_17_3_a2
ER  - 
%0 Journal Article
%A N. A. Moldovyan
%A A. A. Moldovyan
%T Digital signature scheme on the $2 \times 2$ matrix algebra
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 254-261
%V 17
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a2/
%G en
%F VSPUI_2021_17_3_a2
N. A. Moldovyan; A. A. Moldovyan. Digital signature scheme on the $2 \times 2$ matrix algebra. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 3, pp. 254-261. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_3_a2/

[1] Post-quantum cryptography, 10th International conference PQCrypto 2019, Proceedings (Chongqing, China, May 8–10, 2019), Lecture Notes in Computer Science Series

[2] Alamelou Q., Blazy O., Cauchie S., Gaborit Ph., “A code-based group signature scheme”, Designs, codes and cryptography, 82:1–2 (2017), 469–493 | DOI | Zbl

[3] Kuzmin A. S., Markov V. T., Mikhalev A. A., Mikhalev A. V., Nechaev A. A., “Cryptographic algorithms on groups and algebras”, Journal of Mathematical Sciences, 223:5 (2017), 629–641 | DOI | Zbl

[4] Moldovyan N. A., Moldovyan A. A., “Finite non-commutative associative algebras as carriers of hidden discrete logarithm problem”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming $\$ Computer Software, 12:1 (2019), 66–81 | DOI | Zbl

[5] Moldovyan N. A., Moldovyan A. A., “Candidate for practical post-quantum signature scheme”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:4 (2020), 455–461 | DOI

[6] Moldovyan N. A., “A unified method for setting finite non-commutative associative algebras and their properties”, Quasigroups and Related Systems, 26:2 (2018), 263–270 | Zbl

[7] Moldovyan D. N., “New form of the hidden logarithm problem and its algebraic support”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2020, no. 2(93), 3–10 | Zbl

[8] Moldovyan N. A., “Signature schemes on algebras, satisfying enhanced criterion of post-quantum security”, Bulletin of Academy of Sciences of Moldova. Mathematics, 2020, no. 2(93), 62–67 | Zbl

[9] Moldovyan N. A., Moldovyan P. A., “New primitives for digital signature algorithms”, Quasigroups and Related Systems, 17:2 (2009), 271–282 | Zbl

[10] Chaum D., “Security without identification. Transaction systems to make big brother obsolete”, Communications of the AMS, 28:10 (1985), 1030–1044

[11] Camenisch J. L., Piveteau J.-M., Stadler M. A., “Blind signatures based on the discrete logarithm problem”, Advances in Cryptology, EUROCRYPT'94, Proceedings, Lecture Notes in Computer Science, 950, Springer Verlang Publ, Berlin, 1995, 428–432 | DOI | Zbl

[12] Shor P. W., “Polynomial-time algorithms for prime factorization and discrete logarithms on quantum computer”, SIAM Journal of Computing, 26 (1997), 1484–1509 | DOI | Zbl

[13] Jozsa R., “Quantum algorithms and the fourier transform”, Proceedings of the Royal Society of London. Series A, 454 (1998), 323–337 | DOI | Zbl

[14] Yan S. Y., Quantum attacks on public-key cryptosystems, Springer Publ, Boston, 2013, 207 pp. | Zbl

[15] Moldovyan D. N., Moldovyan A. A., Moldovyan N. A., “Digital signature scheme with doubled verification equation”, Computer Science Journal of Moldova, 28:1(82) (2020), 80–103 | Zbl