@article{VSPUI_2021_17_2_a9,
author = {E. D. Kotina and D. A. Ovsyannikov},
title = {Mathematical model of joint optimization of programmed and perturbed motions in discrete systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {213--224},
year = {2021},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a9/}
}
TY - JOUR AU - E. D. Kotina AU - D. A. Ovsyannikov TI - Mathematical model of joint optimization of programmed and perturbed motions in discrete systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 213 EP - 224 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a9/ LA - ru ID - VSPUI_2021_17_2_a9 ER -
%0 Journal Article %A E. D. Kotina %A D. A. Ovsyannikov %T Mathematical model of joint optimization of programmed and perturbed motions in discrete systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 213-224 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a9/ %G ru %F VSPUI_2021_17_2_a9
E. D. Kotina; D. A. Ovsyannikov. Mathematical model of joint optimization of programmed and perturbed motions in discrete systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 213-224. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a9/
[1] Propoy A. I., Elements of the theory of optimal discrete processes, Nauka Publ, M., 1973, 255 pp. (In Russian)
[2] Ovsyannikov D. A., Mathematical methods of beam control, Leningrad University Press, L., 1980, 228 pp. (In Russian)
[3] Ovsyannikov D. A., Modeling and optimization of charged particle beam dynamics, Leningrad University Press, L., 1990, 312 pp. (In Russian)
[4] Kotina E. D., Ovsyannikov A. D., “On simultaneous optimization of programmed and perturbed motions in discrete systems”, Proceedings of 11th International IFAC Workshop on Control Applications of Optimization, CAO 2000, v. 1, 2000, 183–185
[5] Kotina E. D., “Control discrete systems and their applications to beam dynamics optimization”, Proceedings of International Conference Physics and Control, PhysCon 2003, v. 3, 2003, 1237041, 997–1002
[6] Kotina E. D., “Discrete optimization problem in beam dynamics”, Nuclear Instruments and Methods in Physics Research. Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 558:1 (2006), 292–294 | DOI
[7] Kurzhanski A. B., Control in case of uncertainty, Fizmatlit Publ, M., 1977, 394 pp. (In Russian)
[8] Bondarev B. I., Durkin A. P., Ovsyannikov A. D., “New mathematical optimization models for RFQ structures”, Proceedings of 1999 Particle Accelerator Conference, New York, 1999, 2808–2810 | DOI
[9] Ovsyannikov A. D., “Control of charged particles beam with consideration of their interaction”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2009, no. 2, 82–92 (In Russian) | MR
[10] Ovsyannikov A. D., Mathematical models of beam dynamics optimization, VVM Publ, Saint Petersburg, 2014, 181 pp. (In Russian)
[11] Mizintseva M. A., Ovsyannikov D. A., “On the minimax problem of beam dynamics optimization”, Proceedings of the 25th Russian Particle Accelerator Conference, RuPAC 2016, 2016, 360–362
[12] Mizintseva M. A., Ovsyannikov D. A., “Minimax problem of simultaneous optimization of smooth and non-smooth functionals”, Proceedings of 2017 Constructive non-smooth analysis and related topics (dedicated to the memory of V. F. Demyanov), IEEE, 2017, 1–4 | MR
[13] Ovsyannikov D. A., Mizintseva M. A., Ovsyannikov A. D., “Joint optimization of smooth and non-smooth functionals on beams of trajectories”, Proceedings of the International Conference Optimal Control and Differential Games, dedicated to the 110th anniversary of L. S. Pontryagin, 2018, 203–205 | MR
[14] Ovsyannikov D. A., Mizintseva M. A., Balabanov M. Yu., Durkin A. P., Edamenko N. S., Kotina E. D., Ovsyannikov A. D., “Optimization of dynamics of trajectory bundles using smooth and non-smooth functionals. Pt 1”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:1 (2020), 73–84 (In Russian) | DOI | MR
[15] Demyanov V. F., Minimax: directional differentiability, Leningrad University Press, L., 1974, 112 pp. (In Russian) | MR
[16] Kotina E. D., “On the theory of determining displacement field on the base of transfer equation in discrete case”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 3, 38–43 (In Russian)
[17] Kotina E. D., Leonova E. B., Ploskikh V. A., “Radionuclide images processing with the use of discrete systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 544–554 (In Russian) | DOI | MR
[18] Golovkina A., Ovsyannikov D., Olaru S., “Performance optimization of radioactive waste transmutation in accelerator driven system”, Cybernetics and Physics, 7:4 (2018), 210–215 | DOI
[19] Kluchevskaia Yu. D., Polozov S. M., “Beam dynamics simulation in a linear accelerator for Cern future circular collider”, Cybernetics and Physics, 9:2 (2020), 98–102 | DOI
[20] Kurzhanski A. B., Varaiya P., “Optimization of output feedback control under set-membership uncertainty”, Journal of Optimization Theory and Applications, 151:1 (2011), 11–32 | DOI | MR | Zbl
[21] Bortakovskii A. S., “Separation theorem in control problems of beam trajectories of deterministic linear switched systems”, Proceedings of the Russian Academy of Sciences. Theory and control systems, 2020, no. 2, 37–63 (In Russian) | Zbl
[22] Bortakovskii A. S., Nemychenkov G. I., “Suboptimal control of bunches of trajectories of discrete deterministic automaton time-invariant systems”, Journal of Computer and Systems Sciences International, 56:6 (2017), 914–929 | DOI | MR | Zbl
[23] Panteleev A. V., Pis'mennaya V. A., “Application of a memetic algorithm for the optimal control of bunches of trajectories of nonlinear deterministic systems with incomplete feedback”, Journal of Computer and Systems Sciences International, 57:1 (2018), 25–36 | DOI | MR | Zbl