@article{VSPUI_2021_17_2_a7,
author = {I. V. Alexandrova and A. P. Zhabko},
title = {Lyapunov {\textemdash} {Krasovskii} functionals for homogeneous systems with multiple delays},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {183--195},
year = {2021},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/}
}
TY - JOUR AU - I. V. Alexandrova AU - A. P. Zhabko TI - Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 183 EP - 195 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/ LA - ru ID - VSPUI_2021_17_2_a7 ER -
%0 Journal Article %A I. V. Alexandrova %A A. P. Zhabko %T Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 183-195 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/ %G ru %F VSPUI_2021_17_2_a7
I. V. Alexandrova; A. P. Zhabko. Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/
[1] Krasovskii N. N., “On the second Lyapunov method application to the equations with delay”, Applied Mathematics and Mechanics, 20:3 (1956), 315–327 (In Russian)
[2] Kharitonov V. L., Zhabko A. P., “Lyapunov — Krasovskii approach to the robust stability analysis of time-delay systems”, Automatica, 39 (2003), 15–20 | DOI | MR | Zbl
[3] Kharitonov V. L., Time-delay systems: Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 311 pp. | MR | Zbl
[4] Niculescu S.-I., Delay effects on stability: A robust control approach, Springer, Heidelberg, 2001, 383 pp. | MR | Zbl
[5] Aleksandrov A. Yu., Zhabko A. P., Zhabko I. A., “Estimation of the asymptotic stability domains for solutions of homogeneous differential-difference systems”, Control Systems and Information Technologies, 55:1 (2014), 4–7 (In Russian)
[6] Aleksandrov A. Yu., Zhabko A. P., Pecherskii V. S., “Complete type functionals for some classes of homogeneous differential-difference systems”, Proceedings of 8th International Conference “Modern Methods of Applied Mathematics, Control Theory and Computer Technology”, Science Book Publ. House, Voronezh, 2015, 5–8 (In Russian)
[7] Zhabko A. P., Alexandrova I. V., “Lyapunov direct method for homogeneous time delay systems”, Proceedings of 15th IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2019), IFAC-PapersOnLine, 52, no. 18, 2019, 79–84 | DOI
[8] Aleksandrov A. Yu., Zhabko A. P., “On the asymptotic stability of solutions of nonlinear systems with delay”, Siberian Mathematical Journal, 53:3 (2012), 393–403 (In Russian) | MR | Zbl
[9] Aleksandrov A. Yu., Hu G.-D., Zhabko A. P., “Delay-independent stability conditions for some classes of nonlinear systems”, IEEE Trans. Autom. Control, 59:8 (2014), 2209–2214 | DOI | MR | Zbl
[10] Aleksandrov A. Yu., Zhabko A. P., “Delay-independent stability of homogeneous systems”, Applied Mathematics Letters, 34 (2014), 43–50 | DOI | MR | Zbl
[11] Zhabko A. P., Alexandrova I. V., “Complete type functionals for homogeneous time delay systems”, Automatica, 125 (2021), 109456 | DOI | MR | Zbl
[12] Efimov D., Aleksandrov A., “Analysis of robustness of homogeneous systems with time delays using Lyapunov — Krasovskii functionals”, International Journal of Robust and Nonlinear Control, 2020, 1–17 | DOI | MR
[13] Portilla G., Alexandrova I. V., Mondié S., “Estimates for weighted homogeneous delay systems: A Lyapunov — Krasovskii — Razumikhin approach”, American Control Conference (ACC'2021) (to appear)
[14] Efimov D., Polyakov A., Perruquetti W., Richard J. P., “Weighted homogeneity for time-delay systems: finite-time and independent of delay stability”, IEEE Trans. Autom. Control, 61:1 (2016), 210–215 | DOI | MR | Zbl
[15] Zubov V. I., Stability of motion, Vysshaya shkola Publ, M., 1984, 232 pp. (In Russian) | MR
[16] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems $\$ Control Letters, 19 (1992), 467–473 | DOI | MR | Zbl
[17] Krasovskii N. N., Some problems of the stability theory of motion, Fis.-Mat. Lit. Publ., M., 1959, 211 pp. (In Russian)
[18] Melchor-Aguilar D., Niculescu S.-I., “Estimates of the attraction region for a class of nonlinear time-delay systems”, IMA Journal of Mathematical Control Information, 24:4 (2007), 523–550 | DOI | MR | Zbl
[19] Portilla G., Alexandrova I. V., Mondié S., Zhabko A. P., “Estimates for solutions of homogeneous time-delay systems: Comparison of Lyapunov — Krasovskii and Lyapunov — Razumikhin techniques”, International Journal of Control (to appear)