Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 183-195 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, explicit constructions of Lyapunov — Krasovskii functionals are proposed for homogeneous systems with multiple constant delays and homogeneity degree of the right-hand sides strictly greater than one. The constructions are based on the Lyapunov functions suitable for the analysis of corresponding systems with all delays equal to zero. The letter systems are assumed to be asymptotically stable. It is proved that the proposed functionals satisfy the conditions of the Krasovskii theorem, and hence it allows us to establish the asymptotic stability of the trivial solution for arbitrary values of delays. The functionals are applied to the estimation of the attraction region of the trivial solution.
Keywords: time delay systems, homogeneous systems, asymptotic stability, Lyapunov — Krasovskii functionals, attraction region.
@article{VSPUI_2021_17_2_a7,
     author = {I. V. Alexandrova and A. P. Zhabko},
     title = {Lyapunov {\textemdash} {Krasovskii} functionals for homogeneous systems with multiple delays},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {183--195},
     year = {2021},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/}
}
TY  - JOUR
AU  - I. V. Alexandrova
AU  - A. P. Zhabko
TI  - Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 183
EP  - 195
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/
LA  - ru
ID  - VSPUI_2021_17_2_a7
ER  - 
%0 Journal Article
%A I. V. Alexandrova
%A A. P. Zhabko
%T Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 183-195
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/
%G ru
%F VSPUI_2021_17_2_a7
I. V. Alexandrova; A. P. Zhabko. Lyapunov — Krasovskii functionals for homogeneous systems with multiple delays. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a7/

[1] Krasovskii N. N., “On the second Lyapunov method application to the equations with delay”, Applied Mathematics and Mechanics, 20:3 (1956), 315–327 (In Russian)

[2] Kharitonov V. L., Zhabko A. P., “Lyapunov — Krasovskii approach to the robust stability analysis of time-delay systems”, Automatica, 39 (2003), 15–20 | DOI | MR | Zbl

[3] Kharitonov V. L., Time-delay systems: Lyapunov functionals and matrices, Birkhäuser, Basel, 2013, 311 pp. | MR | Zbl

[4] Niculescu S.-I., Delay effects on stability: A robust control approach, Springer, Heidelberg, 2001, 383 pp. | MR | Zbl

[5] Aleksandrov A. Yu., Zhabko A. P., Zhabko I. A., “Estimation of the asymptotic stability domains for solutions of homogeneous differential-difference systems”, Control Systems and Information Technologies, 55:1 (2014), 4–7 (In Russian)

[6] Aleksandrov A. Yu., Zhabko A. P., Pecherskii V. S., “Complete type functionals for some classes of homogeneous differential-difference systems”, Proceedings of 8th International Conference “Modern Methods of Applied Mathematics, Control Theory and Computer Technology”, Science Book Publ. House, Voronezh, 2015, 5–8 (In Russian)

[7] Zhabko A. P., Alexandrova I. V., “Lyapunov direct method for homogeneous time delay systems”, Proceedings of 15th IFAC Workshop on Time Delay Systems (Sinaia, Romania, 2019), IFAC-PapersOnLine, 52, no. 18, 2019, 79–84 | DOI

[8] Aleksandrov A. Yu., Zhabko A. P., “On the asymptotic stability of solutions of nonlinear systems with delay”, Siberian Mathematical Journal, 53:3 (2012), 393–403 (In Russian) | MR | Zbl

[9] Aleksandrov A. Yu., Hu G.-D., Zhabko A. P., “Delay-independent stability conditions for some classes of nonlinear systems”, IEEE Trans. Autom. Control, 59:8 (2014), 2209–2214 | DOI | MR | Zbl

[10] Aleksandrov A. Yu., Zhabko A. P., “Delay-independent stability of homogeneous systems”, Applied Mathematics Letters, 34 (2014), 43–50 | DOI | MR | Zbl

[11] Zhabko A. P., Alexandrova I. V., “Complete type functionals for homogeneous time delay systems”, Automatica, 125 (2021), 109456 | DOI | MR | Zbl

[12] Efimov D., Aleksandrov A., “Analysis of robustness of homogeneous systems with time delays using Lyapunov — Krasovskii functionals”, International Journal of Robust and Nonlinear Control, 2020, 1–17 | DOI | MR

[13] Portilla G., Alexandrova I. V., Mondié S., “Estimates for weighted homogeneous delay systems: A Lyapunov — Krasovskii — Razumikhin approach”, American Control Conference (ACC'2021) (to appear)

[14] Efimov D., Polyakov A., Perruquetti W., Richard J. P., “Weighted homogeneity for time-delay systems: finite-time and independent of delay stability”, IEEE Trans. Autom. Control, 61:1 (2016), 210–215 | DOI | MR | Zbl

[15] Zubov V. I., Stability of motion, Vysshaya shkola Publ, M., 1984, 232 pp. (In Russian) | MR

[16] Rosier L., “Homogeneous Lyapunov function for homogeneous continuous vector field”, Systems $\$ Control Letters, 19 (1992), 467–473 | DOI | MR | Zbl

[17] Krasovskii N. N., Some problems of the stability theory of motion, Fis.-Mat. Lit. Publ., M., 1959, 211 pp. (In Russian)

[18] Melchor-Aguilar D., Niculescu S.-I., “Estimates of the attraction region for a class of nonlinear time-delay systems”, IMA Journal of Mathematical Control Information, 24:4 (2007), 523–550 | DOI | MR | Zbl

[19] Portilla G., Alexandrova I. V., Mondié S., Zhabko A. P., “Estimates for solutions of homogeneous time-delay systems: Comparison of Lyapunov — Krasovskii and Lyapunov — Razumikhin techniques”, International Journal of Control (to appear)