Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 174-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Each model for forecasting agrometeorological risks based on the analysis of one-dimensional time series is effective for a certain range of initial information. In addition, the values of the initial observations can differ significantly for each specific case, respectively, the widespread use of one method for the analysis of arbitrary information can lead to significant inaccuracies. Thus, the problem of choosing a forecasting method for the initial set of agrometeorological data arises. In this regard, a universal adaptive probabilistic-statistical approach to predicting agrometeorological risks is proposed, which makes it possible to solve the problem of choosing a model. The article presents the results of the first stage of research carried out with the financial support of the Ministry of Education and Science of the Russian Federation: a brief overview of the current state of research in this direction is presented, theoretical foundations for predicting agrometeorological risks for a possible onset of drought and frost have been developed, including the task of generating initial information, a description of basic forecasting models, and also a direct description of the proposed approach with a presentation of the general structure of an intelligent system, on the basis of which the corresponding algorithm can be developed and automated as directions for further work.
Keywords: one-dimensional time series, forecasting, droughts, frosts, agrometeorological hazards, intelligent system.
@article{VSPUI_2021_17_2_a6,
     author = {V. P. Yakushev and V. M. Bure and O. A. Mitrofanova and E. P. Mitrofanov},
     title = {Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {174--182},
     year = {2021},
     volume = {17},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a6/}
}
TY  - JOUR
AU  - V. P. Yakushev
AU  - V. M. Bure
AU  - O. A. Mitrofanova
AU  - E. P. Mitrofanov
TI  - Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 174
EP  - 182
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a6/
LA  - ru
ID  - VSPUI_2021_17_2_a6
ER  - 
%0 Journal Article
%A V. P. Yakushev
%A V. M. Bure
%A O. A. Mitrofanova
%A E. P. Mitrofanov
%T Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 174-182
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a6/
%G ru
%F VSPUI_2021_17_2_a6
V. P. Yakushev; V. M. Bure; O. A. Mitrofanova; E. P. Mitrofanov. Theoretical foundations of probabilistic and statistical forecasting of agrometeorological risks. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 174-182. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a6/

[1] IPCC 2012, eds. S. B. Field, V. Barros, T. F. Stocker, D. Qin, D. J. Dokken, K. L. Ebi, M. D. Mastrandrea, K. J. Mach, G.-K. Plattner, S. K. Allen, M. Tignor, P. M. Midgley, Cambridge University Press, Cambridge, UK–New York, USA, 2012, 582 pp.

[2] Drobzheva Ia. V., Volobueva O. V., Meteorological forecasts and their economic usefulness, Tutorial, Admyral Publ, Saint Petersburg, 2016, 116 pp. (In Russian)

[3] Vil'fand R. M., Strashnaia A. I., Bereza O. V., “On the dynamics of agroclimatic indicators of sowing conditions, wintering and the formation of the yield of the main grain crops”, Proceedings of Hydrometcenter of Russia, 360 (2016), 45–78 (In Russian)

[4] Zhang F., Chen Y., Zhang J., Guo E., Wang R., Li D., “Dynamic drought risk assessment for maize based on crop simulation model and multi-source drought indices”, Journal of Cleaner Production, 233 (2019), 100–114 | DOI

[5] Liu X., Guo P., Tan Q., Xin J., Li Y., Tang Y., “Drought risk evaluation model with interval number ranking and its application”, Science of the Total Environment, 685 (2019), 1042–1057 | DOI

[6] Strashnaia A. I., Bereza O. V., Tarasova L. L., Maksimenkova T. A., Shul'gin I. A., Purina I. E., Chekulaeva T. S., “Current state and problems of agrometeorological support of agriculture in Russia”, Hydrometeorological Research and Forecasting, 2019, no. 4(374), 219–240 (In Russian)

[7] Park S., Im J., Park S., Rhee J., “Drought monitoring using high resolution soil moisture through multi-sensor satellite data fusion over the Korean peninsula”, Agricultural and Forest Meteorology, 237 (2017), 257–269 | DOI

[8] Gobbett D. L., Nidumolu U., Crimp S., “Modelling frost generates insights for managing risk of minimum temperature extremes”, Weather and Climate Extremes, 27 (2020), 100176 | DOI | MR

[9] Crimp S., Bakar K. S., Kokic P., Jin H., Nicholls N., Howden M., “Bayesian space-time model to analyse frost risk for agriculture in Southeast Australia”, International Journal of Climatology, 35 (2015), 2092–2108 | DOI

[10] Van Hinsbergen C., van Lint J., van Zuylen H., “Bayesian committee of neural networks to predict travel times with confidence intervals”, Transportation Research. Pt C: Emerging Technologies, 17 (2009), 498–509 | DOI

[11] Xiao L., Liu L., Asseng S., Xia Y., Tang L., Liu B., Cao W., Zhu Y., “Estimating spring frost and its impact on yield across winter wheat in China”, Agricultural and Forest Meteorology, 260–261 (2018), 154–164 | DOI

[12] Frolov A. V., Strashnaia A. I., “On the 2010 drought and its impact on grain yields”, Analysis of abnormal weather conditions in Russia in the summer of 2010, Triada LTD Publ., M., 2011, 22–31 (In Russian)

[13] Iakushev V. P., Bure V. M., Mitrofanova O. A., Mitrofanov E. P., “On the issue of semivariograms constructing automation for precision agriculture problems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 177–185 (In Russian) | DOI

[14] Bure V. M., Kanash E. V., Mitrofanova O. A., “Analysis of plants color characteristics using aerophotos with different factors of qualitative indicators”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 278–285 (In Russian) | DOI | MR