@article{VSPUI_2021_17_2_a5,
author = {V. P. Tregubov and N. K. Egorova},
title = {Investigation of the frequency properties of a~standard linear body},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {166--173},
year = {2021},
volume = {17},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a5/}
}
TY - JOUR AU - V. P. Tregubov AU - N. K. Egorova TI - Investigation of the frequency properties of a standard linear body JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 166 EP - 173 VL - 17 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a5/ LA - ru ID - VSPUI_2021_17_2_a5 ER -
%0 Journal Article %A V. P. Tregubov %A N. K. Egorova %T Investigation of the frequency properties of a standard linear body %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 166-173 %V 17 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a5/ %G ru %F VSPUI_2021_17_2_a5
V. P. Tregubov; N. K. Egorova. Investigation of the frequency properties of a standard linear body. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 166-173. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a5/
[1] Xiao R., Sun H., Chen W., “An equivalence between generalized maxwell model and fractional zener model”, Mechanics of Materials, 100 (2016), 148–153 | DOI
[2] Sethuraman V., Makornkaewkeyoon K., Khalf A., Madihally S. V., “Influence of scaffold forming techniques on stress relaxation behavior of polycaprolactone scaffolds”, Journal of Applied Polymer Science, 130 (2013), 4237–4244
[3] Shazly T. M., Artzi N., Boehning F., Edelman E. R., “Viscoelastic adhesive mechanics of aldehyde-mediated soft tissue sealants”, Biomaterials, 29 (2008), 4584–4591 | DOI
[4] Feng Z., Seya D., Kitajima T., Kosawada T., Nakamura T., Umezu M., “Viscoelastic characteristics of contracted collagen gels populated with rat fibroblasts or cardiomyocytes”, Journal of Artificial Organs, 13 (2010), 139–144 | DOI
[5] Tirella A., Mattei G., Ahluwalia A., “Strain rate viscoelastic analysis of soft and highly hydrated biomaterials”, Journal of Biomedical Materials Research, 102 (2014), 3352–3360 | DOI
[6] Capocardo L., Costa J., Giusti S., Buoncompagni L., Meucci S., Corti A., Mattei G., Ahluwalia A., “Real-time cellular impedance monitoring and imaging of biological barriersin a dual-flow membrane bioreactor”, Biosensors and Bioelectronics, 140 (2019), 1–9
[7] Kizilova N. N., “Presser wave propagation in liquid field”, Fluid dynamics, 41:3 (2006), 434–446 | DOI | MR | Zbl
[8] Orne D., Liu Y. K., “A mathematical model of spinal response to impact”, Journal of Biomechanics, 4:1 (1971), 49–71 | DOI
[9] Braunsmann C., Proksch R., Revenko I., Schäffer T. E., “Creep compliance mapping by atomic force microscopy”, Polymer, 55 (2014), 219–225 | DOI
[10] Petit-Zeman S., “Regenerative medicine”, Nature Biotechnology, 19 (2001), 201–206 | DOI
[11] O'Brien F. J., “Biomaterials $\$ scaffolds for tissue engineering”, Materials Today, 14 (2011), 88–95 | DOI
[12] Smith B. D., Grande D. A., “The current state of scaffolds for musculoskeletal regenerative applications”, Nature Reviews Rheumatology, 11 (2015), 213–222 | DOI
[13] Agarwal R., García A. J., “Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair”, Advanced Drug Delivery Reviews, 94 (2015), 53–62 | DOI
[14] Deng C. X., Hong X., Stegemann J. P., “Ultrasound imaging techniques for spatiotemporal characterization of composition, microstructure, and mechanical properties in tissue engineering”, Tissue Engineering. Pt B. Reviews, 22 (2015), 311–321 | DOI
[15] Hong X., Annamalai R. T., Kemerer T. S., Deng C. X., Stegemann J. P., “Multimode ultrasound viscoelastography for three-dimensional interrogation of microscale mechanical properties in heterogeneous biomaterials”, Biomaterials, 178 (2018), 11–22 | DOI
[16] Argatov I. I., “Mathematical modeling of linear viscoelastic impact: Application to drop impact testing of articular cartilage”, Tribology International, 63 (2013), 213–225 | DOI
[17] Thompson G. T., “In vivo determination of mechnical properties of the human ulna by means of mechanical impedance tests: Experimental results and improved mathematical model”, Medical and Biological Engineering, 14 (1976), 253–262 | DOI
[18] Che Yu-Lin, “Alternative form of standard linear solid model for characterizing stress relaxation and creep: Including a novel parameter for quantifying the ratio of fluids to solids of a viscoelastic solid”, Frontiers in Materials, 2020, 7–11
[19] Tregubov V. P., Egorova N. K., “Modeling of biomechanical systems with a non-integer number of degrees of freedom”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:3 (2020), 267–276 (In Russian) | DOI | MR