Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 131-136 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the mathematical modeling of the triode emission axially symmetric system on the basis of field emitter is considered. Emitter is an ellipsoid of revolution, anode is a confocal ellipsoidal surface of revolution. Modulator is a part of the ellipsoidal surface of revolution, confocal with the cathode and anode surfaces. The boundary-value problem for the Laplace's equation in the prolate spheroidal coordinates with the boundary conditions of the first kind is solved. The variable separation method is applied to calculate the axisymmetrical electrostatic potential distribution. The potential distribution is represented as the Legendre functions expansion. The expansion coefficients are the solution of the system of linear equations. All geometrical dimensions of the system are the parameters of the problem.
Keywords: micro- and nanoelectronics, field emitter, field emission, mathematical modeling, electrostatic potential, boundary-value problem, Legendre functions.
@article{VSPUI_2021_17_2_a2,
     author = {N. V. Egorov and E. M. Vinogradova},
     title = {Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {131--136},
     year = {2021},
     volume = {17},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a2/}
}
TY  - JOUR
AU  - N. V. Egorov
AU  - E. M. Vinogradova
TI  - Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 131
EP  - 136
VL  - 17
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a2/
LA  - en
ID  - VSPUI_2021_17_2_a2
ER  - 
%0 Journal Article
%A N. V. Egorov
%A E. M. Vinogradova
%T Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 131-136
%V 17
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a2/
%G en
%F VSPUI_2021_17_2_a2
N. V. Egorov; E. M. Vinogradova. Mathematical modeling of triode system on the basis of field emitter with ellipsoid shape. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 2, pp. 131-136. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_2_a2/

[1] Bachmann M., Dusberg F., Langer C., Herdl F., Bergbreiter L., Dams F., Miyakawa N., Eggert T., Pahlke A., Edler S., Prommesberger C., Lawrowski R., Hausladen M., Schreiner R., “Vacuum-sealed field emission electron gun”, Journal of Vacuum Science and Technology B. Nanotechnology and Microelectronics, 38:2 (2020), 023203

[2] Tripathi P., Gupta B. K., Bankar P. K., More M. A., Late D. J., Srivastava O. N., “Graphene nanosheets assisted carbon hollow cylinder for high-performance field emission applications”, Materials Research Express, 6:9 (2019), 095066 | DOI

[3] Jones W. M., Lukin D., Scherer A., “Practical nanoscale field emission devices for integrated circuits”, Applied Physics Letters, 110:26 (2017), 263101 | DOI

[4] Sominskii G. G., Tumareva T. A., Taradaev E. P., Rukavitsyna A. A., Givargizov M. E., Stepanova A. N., “Annular multi-tip field emitters with metal-fullerene protective coatings”, Technical Physics, 64:2 (2019), 270–273 | DOI

[5] Nguyen H. D., Kang J. S., Li M., Hu Y., “High-performance field emission based on nanostructured tin selenide for nanoscale vacuum transistors”, Nanoscale, 11:7 (2019), 3129–3137 | DOI

[6] Vinogradova E. M., Egorov N. V., Televnyi D. S., “Calculation of a triode field-emission system with a modulator”, Technical Physics, 59:2 (2014), 291–296 | DOI

[7] Egorov N. V., Vinogradova E. M., “Mathematical modeling of the electron beam formatting systems on the basis of field emission cathodes with various shapes”, User Modeling and User-Adapted Interaction, 72:2 (2003), 103–111

[8] Majić M. R. A., Gray F., Auguié B., Ru E. C. L., “Electrostatic limit of the $T$-matrix for electromagnetic scattering: Exact results for spheroidal particles”, Journal of Quantitative Spectroscopy and Radiative Transfer, 200 (2017), 50–58 | DOI

[9] Majić M. R. A., Gray F., Auguié B., Ru E. C. L., “Spheroidal harmonic expansions for the solution of Laplace's equation for a point source near a sphere”, Physical Review E, 95:3 (2017), 033307 | DOI | MR

[10] Techaumnat B., Huynh V., Hidaka K., “Three-dimensional lectromechanical analysis of a conducting prolate spheroid on a grounded plane”, IEEE Transactions on Dielectrics and Electrical Insulation, 21:1 (2014), 6740728, 80–87 | DOI

[11] Xue C., Edmiston R., Deng S., “Image theory for Neumann functions in the prolate spheroidal geometry”, Advances in Mathematical Physics, 2018 (2018), 7683929 | DOI | MR | Zbl

[12] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, Applied Mathematics, 55, NBS Press, Washington, DC, 1964, 1046 pp. | MR

[13] Bateman H., Erdelyi A., Higher transcendental functions, In 2 vol., v. 1, McGraw-Hill Book Company Inc, New York–Toronto–London, 1953, 302 pp. | MR

[14] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 7th ed., Academic Press, Amsterdam–Boston–Heidelberg–London–New York–Oxford–Paris–San Diego–San Francisco–Singapore–Sydney–Tokyo, 2007, 1171 pp. | MR | Zbl