Stability analysis of a nanopatterned bimaterial interface
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 97-104
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the article it is shown that the nanopatterned interface of bimaterial is unstable due to the diffusion atom flux along the interface. The main goal of the research is to analyze the conditions of interface stability. The authors developed a model coupling thermodynamics and solid mechanics frameworks. In accordance with the Gurtin—Murdoch theory of surface/interface elasticity, the interphase between two materials is considered as a negligibly thin layer with the elastic properties differing from those of the bulk materials. The growth rate of interface roughness depends on the variation of the chemical potential at the curved interface, which is a function of interface and bulk stresses. The stress distribution along the interface is found from the solution of plane elasticity problem taking into account plane strain conditions. Following this, the linearized evolution equation is derived, which describes the amplitude change of interface perturbation with time.
Keywords: boundary perturbation method, interface elasticity, morphological instability.
Mots-clés : evolution equation, interface diffusion
@article{VSPUI_2021_17_1_a8,
     author = {G. M. Shuvalov and S. A. Kostyrko},
     title = {Stability analysis of a nanopatterned bimaterial interface},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {97--104},
     year = {2021},
     volume = {17},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a8/}
}
TY  - JOUR
AU  - G. M. Shuvalov
AU  - S. A. Kostyrko
TI  - Stability analysis of a nanopatterned bimaterial interface
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 97
EP  - 104
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a8/
LA  - en
ID  - VSPUI_2021_17_1_a8
ER  - 
%0 Journal Article
%A G. M. Shuvalov
%A S. A. Kostyrko
%T Stability analysis of a nanopatterned bimaterial interface
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 97-104
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a8/
%G en
%F VSPUI_2021_17_1_a8
G. M. Shuvalov; S. A. Kostyrko. Stability analysis of a nanopatterned bimaterial interface. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 97-104. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a8/

[1] Asaro R. J., Tiller W. A., “Interface morphology development during stress-corrosion cracking. Pt I. Via surface diffusion”, Metallurgical and Materials Transactions, 3 (1972), 1789–1796 | DOI

[2] Grinfeld M. A., “The stress driven instabilities in elastic crystals: mathematical models and physical manifestation”, Journal of Nonlinear Science, 3:1 (1993), 35–83 | DOI | MR | Zbl

[3] Colin J., Grilhe J., Junqua N., “Morphological instabilities of a stressed pore channel”, Acta Materialia, 45 (1997), 3835–3841 | DOI

[4] Kim J. H., Vlassak J. J., “Perturbation analysis of an undulating free surface in a multilayered structure”, International Journal of Solids and Structures, 44 (2007), 7924–7937 | DOI | Zbl

[5] Shuvalov G., Kostyrko S., “Surface self-organization in multilayer film coatings”, AIP Conference Proceedings, 1909 (2017), 020196 | DOI

[6] Gurtin M. E., Murdoch A. I., “A continuum theory of elastic material surfaces”, Archive for Rational Mechanics and Analysis, 57 (1975), 291–323 | DOI | MR | Zbl

[7] Gurtin M. E., Murdoch A. I., “Surface stress in solids”, International Journal of Solids and Structures, 14 (1978), 431–440 | DOI | Zbl

[8] Grekov M. A., Kostyrko S. A., “Surface effects in an elastic solid with nanosized surface asperities”, International Journal of Solids and Structures, 96 (2016), 153–161 | DOI

[9] Klinger L., Levin L., Srolovitz D., “Morphological stability of a heterophase interface under electromigration conditions”, Journal of Applied Physics, 79 (1996), 6834–6839 | DOI

[10] Freund L. B., “Evolution of waviness on the surface of a strained elastic solid due to stress-driven diffusion”, International Journal of Solids and Structures, 28 (1995), 911–923 | DOI

[11] Pronina Y., “An analytical solution for the mechanochemical growth of an elliptical hole in an elastic plane under a uniform remote load”, European Journal of Mechanics, A/Solids, 61 (2017), 357–363 | DOI | MR | Zbl

[12] Pronina Y., Sedova O., Grekov M., Sergeeva T., “On corrosion of a thin-walled spherical vessel under pressure”, International Journal of Engineering Science, 130 (2018), 115–128 | DOI | MR | Zbl

[13] Goldstein R. V., Makhviladze T. M., Sarychev M. E., “Instability of the interface between joint conducting materials under electrical current”, Materials Letters, 6 (2016), 98–101 | DOI

[14] Kostyrko S. A., Grekov M. A., “Elastic field at a rugous interface of a bimaterial with surface effects”, Engineering Fracture Mechanics, 216 (2019), 106507 | DOI

[15] Kostyrko S., Shuvalov G., “Surface elasticity effect on diffusional growth of surface defects in strained solids”, Continuum Mechanics and Thermodynamics, 31 (2019), 1795–1803 | DOI | MR