Asymptotic properties and stabilization of a neutral type system with constant delay
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 81-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of obtaining sufficient conditions for the asymptotic stability for a certain class of linear systems of a neutral type with constant delay is analyzed in the article. Some coefficients of these systems in the right side have an exponential factor. As a consequence, the study of the stability of such systems with the help of the Lyapunov—Krasovskii functionals is not possible; methods of receiving asymptotic appreciations lead to extremely rough results. By applying the apparatus of difference systems and the properties of simpler systems, which the author examined previous, sufficient conditions for the exponential stability of such systems are obtained. As an example, a second-order system is considered. The graphs of the solutions of the corresponding system, both without neutral members and with the original system where the right-hand side contains neutral terms, are provided. On the basis of theory difference systems, the author proposes an algorithm of stabilization for some systems of a similar type.
Keywords: delay, exponential stability, difference systems, stabilization, control.
@article{VSPUI_2021_17_1_a7,
     author = {B. G. Grebenshchikov},
     title = {Asymptotic properties and stabilization of a neutral type system with constant delay},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {81--96},
     year = {2021},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a7/}
}
TY  - JOUR
AU  - B. G. Grebenshchikov
TI  - Asymptotic properties and stabilization of a neutral type system with constant delay
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 81
EP  - 96
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a7/
LA  - ru
ID  - VSPUI_2021_17_1_a7
ER  - 
%0 Journal Article
%A B. G. Grebenshchikov
%T Asymptotic properties and stabilization of a neutral type system with constant delay
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 81-96
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a7/
%G ru
%F VSPUI_2021_17_1_a7
B. G. Grebenshchikov. Asymptotic properties and stabilization of a neutral type system with constant delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 81-96. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a7/

[1] R. Bellman, K. Cooke, Differential-difference equations, Academic Press, New York, 1963 | MR | Zbl

[2] L. E. Elsholz, C. B. Norckin, Introduction to theory of differential equations with deviat argument, Nauka, M., 1971, 296 pp. (In Russian) | MR

[3] V. V. Vlasov, S. A. Ivanov, “Estimates of solutions of non ordinary differential-difference equations of neutral type”, Russian Mathematics, 2006, no. 3, 24–30 (In Russian) | Zbl

[4] B. G. Grebenshchikov, V. I. Rozhkov, “Asymptotical behavior once system with delay”, Differential Equations, 29:5 (1993), 751–758 (In Russian) | MR

[5] V. B. Kolmanovskiy, V. R. Nosov, Stability of periodical regimes of regular systems delay, Nauka, M., 1984, 448 pp. (In Russian)

[6] J. R. Ockendon, A. B. Tayler, “The dynamics of a current collection system for an electric locomotive”, Proc. Soc. London. Ser. A, 322 (2002), 447–468 | DOI

[7] N. G. Markvardt, I. I. Vlasov, Contact net, Transport, M., 1978, 325 pp. (In Russian)

[8] B. G. Grebenshchikov, S. I. Novikov, “Instability of systems with linear delay reduceble to singularty pertubed ones”, Russian Mathematics, 2010, no. 2, 1–10 (In Russian) | DOI

[9] A. P. Zhabko, O. G. Tihomirov, O. N. Chizhova, “About stabilization same class of system with proportional delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 14:2 (2018), 165–172 (In Russian) | MR

[10] A. N. Sesekin, A. S. Shlyakov, “On the stability of discontinuous solutions of bilinear systems with impulse action, constant and linear delays”, AIP Conference Proceedings, 2172, 2019, 030009, 1–5

[11] E. A. Barbashin, Introduction to theory of stability of motion, Nauka, M., 1967, 225 pp. (In Russian)

[12] B. G. Grebenshchikov, “About stability some linear systems with constant delay and exponential coefficients”, Mathematical analis. Questions of theory, history and methodology of educations, ed. N. M. Matveev, L., 1990, 38–48 (In Russian)

[13] B. G. Grebenshchikov, A. B. Loznikov, “Asymptotical properties of some systems with linear delay”, Functional'no-differentzial'nye uravneniya: theoryia i prilozheniya, Proceedings of conference with memory of year born prof. N. V. Azbelev, Perm Research Polytechnic University Press, Perm, 2018, 51–59 (In Russian)

[14] A. Halanai, D. Wexler, Qualitaive theory of puls systems, Mir, M., 1971, 312 pp. (In Russian) | MR

[15] G. M. Fihtengolz, Differential and integral calculus, In 3 vol., v. 3, Nauka, M., 2002, 655 pp. (In Russian)

[16] B. G. Grebenshchikov, “Ob ustoichivosti nestazionarnyx system s bol'shim zapazdyvaniem”, Stability and non linear oscilations, ed. S. N. Shimanov, Sverdlovsk State University Press, Sverdlovsk, 1984, 18–19 (In Russian)

[17] B. G. Grebenshchikov, “About stability by first approximation some unstationar system with delay”, Russian Mathematics, 2012, no. 2, 34–42 (In Russian) | DOI

[18] B. G. Grebenshchikov, “About stability stationary systems of linear differential delay equations, whose delay linear depends of time”, Russian mathematics, 1991, no. 7, 69–71 (In Russian)

[19] B. G. Grebenshchikov, About stabilization stationary linear systems with delay, linear depends of time, Dep. VINITY, No 4384-92, Russian Mathematics, 1991 (In Russian)