@article{VSPUI_2021_17_1_a4,
author = {A. V. Fominyh and V. V. Karelin and L. N. Polyakova and S. K. Myshkov and V. P. Tregubov},
title = {The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {47--58},
year = {2021},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a4/}
}
TY - JOUR AU - A. V. Fominyh AU - V. V. Karelin AU - L. N. Polyakova AU - S. K. Myshkov AU - V. P. Tregubov TI - The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 47 EP - 58 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a4/ LA - ru ID - VSPUI_2021_17_1_a4 ER -
%0 Journal Article %A A. V. Fominyh %A V. V. Karelin %A L. N. Polyakova %A S. K. Myshkov %A V. P. Tregubov %T The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 47-58 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a4/ %G ru %F VSPUI_2021_17_1_a4
A. V. Fominyh; V. V. Karelin; L. N. Polyakova; S. K. Myshkov; V. P. Tregubov. The codifferential descent method in the problem of finding the global minimum of a piecewise affine objective functional in linear control systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a4/
[1] Fominyh A. V., “Open-loop control of a plant described by a system with nonsmooth right-hand side”, Computational Mathematics and Mathematical Physics, 59:10 (2019), 1639–1648 | DOI | MR | Zbl
[2] Frankowska H., “The first order necessary conditions for nonsmooth variational and control problems”, SIAM J. Control Optim., 22:1 (1984), 1–12 | DOI | MR | Zbl
[3] Ioffe A. D., “Necessary conditions in nonsmooth optimization”, Mathematics of Operations Research, 9:2 (1984), 159–189 | DOI | MR | Zbl
[4] Mordukhovich B., “Necessary conditions for optimality in nonsmooth control problems with nonfixed time”, Differential Equations, 25:1 (1989), 290–299 | MR | Zbl
[5] Shvartsman I. A., “New approximation method in the proof of the maximum principle for nonsmooth optimal control problems with state constraints”, Journal of Mathematical Analysis and Applications, 326:2 (2007), 974–1000 | DOI | MR | Zbl
[6] Vinter R. B., Cheng H., “Necessary conditions for optimal control problems with state constraints”, Transactions of the American Mathematical Society, 350:3 (1998), 1181–1204 | DOI | MR | Zbl
[7] Vinter R. B., “Minimax optimal control”, SIAM J. Control Optim., 44:3 (2005), 939–968 | DOI | MR | Zbl
[8] Gorelik V. A., Tarakanov A. F., “Penalty method and maximum principle for nonsmooth variable-structure control problems”, Cybernetics and Systems Analysis, 28:3 (1992), 432–437 | DOI | MR | Zbl
[9] Gorelik V. A., Tarakanov A. F., “Penalty method for nonsmooth minimax control problems with interdependent variables”, Cybernetics, 25:4 (1989), 483–488 | DOI | MR | Zbl
[10] Morzhin O. V., “On approximation of the subdifferential of the nonsmooth penalty functional in the problems of optimal control”, Automation and Telemechanics, 2009, no. 5, 24–34 (in Russian) | MR | Zbl
[11] Demyanov V. F., Nikulina V. N., Shablinskaya I. R., “Quasidifferentiable functions in optimal control”, Mathematical Programming Study, 29 (1986), 160–175 | DOI | MR | Zbl
[12] Demyanov V. F., Rubinov A. M., Foundations of nonsmooth analysis and quasidifferential calculus, Nauka Publ., M., 1990, 432 pp. (in Russian)
[13] Demyanov V. F., Tamasyan G. Sh., “Direct methods in the parametric moving boundary variational problem”, Numerical Functional Analysis and Optimization, 35:7–9 (2014), 932–961 | DOI | MR | Zbl
[14] Fominyh A. V., Karelin V. V., Polyakova L. N., “Application of the hypodifferential descent method to the problem of constructing an optimal control”, Optimization Letters, 12:8 (2018), 1825–1839 | DOI | MR | Zbl
[15] Fominyh A. V., “Methods of subdifferential and hypodifferential descent in the problem of constructing an integrally constrained program control”, Automation and Remote Control, 78:4 (2017), 608–617 | DOI | MR
[16] Polyakova L. N., “On global unconstrained minimization of the difference of polyhedral functions”, Journal of Global Optimization, 50 (2011), 179–195 | DOI | MR | Zbl
[17] Demyanov V. F., Bagirov A. M., Rubinov A. M., “A method of truncated codifferential with applications to some problems of cluster analysis”, Journal of Global Optimization, 23 (2002), 63–80 | DOI | MR | Zbl
[18] Dolgopolik M. V., “The method of codifferential descent for convex and global piecewise affine optimization”, Optimization Methods and Software, 35:6 (2020), 1191–1222 | DOI | MR | Zbl
[19] Loxton R. C., Teo K. L., Rehbocka V., Yiu K. F. C., “Optimal control problems with a continuous inequality constraint on the state and the control”, Automatica, 45 (2009), 2250–2257 | DOI | MR | Zbl
[20] Teo K. L., Goh C. J., Wong K. H., A unified computational approach to optimal control problems, Longman Scientific and Technical, New York, 1991, 356 pp. | MR | Zbl
[21] Vasil'ev F. P., Optimization methods, Factorial Publ, M., 2002, 824 pp. (in Russian)
[22] Filippov A. F., “On certain questions in the theory of optimal control”, J. SIAM Control. Ser. A, 1 (1962), 76–84 | MR | Zbl
[23] Gorokhovik V. V., Zorko O. I., “Piecewise affine functions and polyhedral sets”, Optimization, 31 (1994), 209–221 | DOI | MR | Zbl
[24] Dolgopolik M. V., “A unifying theory of exactness of linear penalty functions”, Optimization, 65:6 (2015), 1167–1202 | DOI | MR
[25] Dolgopolik M. V., “Exact penalty functions for optimal control problems. II. Exact penalization of terminal and pointwise state constraints”, Optimal Control Applications and Methods, 41:3 (2020), 898–947 | DOI | MR | Zbl
[26] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Nauka Publ, M., 1979, 432 pp. (in Russian) | MR