Mots-clés : decomposition
@article{VSPUI_2021_17_1_a1,
author = {A. Yu. Aleksandrov and A. A. Tikhonov},
title = {Stability analysis of mechanical systems with distributed delay via decomposition},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {13--26},
year = {2021},
volume = {17},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a1/}
}
TY - JOUR AU - A. Yu. Aleksandrov AU - A. A. Tikhonov TI - Stability analysis of mechanical systems with distributed delay via decomposition JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2021 SP - 13 EP - 26 VL - 17 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a1/ LA - ru ID - VSPUI_2021_17_1_a1 ER -
%0 Journal Article %A A. Yu. Aleksandrov %A A. A. Tikhonov %T Stability analysis of mechanical systems with distributed delay via decomposition %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2021 %P 13-26 %V 17 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a1/ %G ru %F VSPUI_2021_17_1_a1
A. Yu. Aleksandrov; A. A. Tikhonov. Stability analysis of mechanical systems with distributed delay via decomposition. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 13-26. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a1/
[1] V. M. Matrosov, Vector Lyapunov function method: analysis of dynamical properties of nonlinear systems, Fizmatlit, M., 2001, 384 pp. (In Russian)
[2] F. L. Chernous'ko, I. M. Anan'evskii, S. A. Reshmin, Methods of control of nonlinear mechanical systems, Fizmatlit, M., 2006, 328 pp. (In Russian)
[3] D. D. Siljak, Decentralized control of complex systems, Academic Press, New York, 1991, 525 pp. | MR
[4] V. I. Zubov, Analytical dynamics of gyroscopic systems, Sudostroenie Publ., L., 1970, 320 pp. (In Russian)
[5] E. S. Pyatnitskii, “The principle of decomposit ion in the control of mechanical systems”, Proceedings of Academy Sciences USSR, 300:2 (1988), 300–303 (In Russian) | Zbl
[6] A. Yu. Aleksandrov, A. V. Platonov, “On stability and dissipativity of some classes of complex systems”, Automation and Remote Control, 70:8 (2009), 1265–1280 | DOI | MR | Zbl
[7] V. N. Tkhai, “Model with coupled subsystems”, Automation and Remote Control, 74:6 (2013), 919–931 | DOI | MR | Zbl
[8] S. L. Podval'nyi, V. V. Provotorov, “Start control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)
[9] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of a non-linear initial boundary value problem with distributed parameters in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | MR
[10] L. A. Klimina, “Method for forming autorotations in controllable mechanical system with two degrees of freedom”, Journal of Computer and Systems Sciences International, 59:6 (2020), 817–827 | DOI | Zbl
[11] S. Yu. Kuptsov, “On a method for stability investigation of linear differential systems families”, Proceedings of the Middle Volga Mathematical Society, 8:1 (2006), 224–235 (In Russian)
[12] A. A. Kosov, “Stability investigation of singular systems via vector Lyapunov functions method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2005, no. 4, 123–129 (In Russian)
[13] A. Yu. Aleksandrov, Y. Chen, A. A. Kosov, L. Zhang, “Stability of hybrid mechanical systems with switching linear force fields”, Non-linear Dynamics and Systems Theory, 11:1 (2011), 53–64 | MR | Zbl
[14] A. Yu. Aleksandrov, A. A. Kosov, Y. Chen, “Stability and stabilization of mechanical systems with switching”, Automation and Remote Control, 72:6 (2011), 1143–1154 | DOI | MR | Zbl
[15] A. Yu. Aleksandrov, E. B. Aleksandrova, A. P. Zhabko, “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[16] A. Y. Aleksandrov, E. B. Aleksandrova, “Asymptotic stability conditions for a class of hybrid mechanical systems with switched non-linear positional forces”, Non-linear Dynamics, 83:4 (2016), 2427–2434 | DOI | MR | Zbl
[17] Y. X. Su, C. H. Zheng, “PID control for global finite-time regulation of robotic manipulators”, International Journal of Systems Sciences, 48 (2017), 547–558 | DOI | MR | Zbl
[18] I. M. Anan'evskii, V. B. Kolmanovskii, “On stabilization of some control systems with an aftereffect”, Automation and Remote Control, 1989, no. 9, 1174–1181 | MR
[19] X. Zhang, X. Chen, G. Zhu, C.-Y. Su, “Output feedback adaptive motion control and its experimental verification for time-delay non-linear systems with asymmetric hysteresis”, IEEE Transactions on Industrial Electronics, 67:8 (2020), 6824–6834 | DOI | MR
[20] S. V. Pavlikov, A. G. Isavnin, “On stabilization of a controlled mechanical system with delayed feedback”, Vestnik of Voronezh State University. Series Physics. Mathematics, 2014, no. 1, 139–146 (In Russian)
[21] S. V. Pavlikov, “On the stabilization of movements of controlled mechanical systems with a retarded controller”, Proceedings of Academy Sciences of Russia, 412:2 (2007), 176–178 (In Russian) | MR | Zbl
[22] E. Fridman, “Tutorial on Lyapunov-based methods for time-delay systems”, European Journal of Control, 20 (2014), 271–283 | DOI | MR | Zbl
[23] J. K. Hale, S. M. Verduyn Lunel, Introduction to functional differential equations, Springer-Verlag, New York, 1993, 458 pp. | MR | Zbl
[24] V. I. Zubov, Dynamics of control systems, Saint Petersburg University Press, Saint Petersburg, 2004, 380 pp. (In Russian)
[25] A. Aleksandrov, O. Mason, “Diagonal Riccati stability and applications”, Linear Algebra Appl., 492 (2016), 38–51 | DOI | MR | Zbl
[26] V. A. Samsonov, M. Z. Dosaev, Y. D. Selyutskiy, “Methods of qualitative analysis in the problem of rigid body motion in medium”, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 21:10 (2011), 2955–2961 | MR | Zbl
[27] H. M. Sedighi, F. Daneshmand, “Non-linear transversely vibrating beams by the homotopy perturbation method with an auxiliary term”, Journal of Applied and Computational Mechanics, 1:1 (2015), 1–9
[28] Y. Park, C. Lee, “Dynamic investigation of non-linear behavior of hydraulic cylinder in mold oscillator using PID control process”, Journal of Applied and Computational Mechanics, 7:1 (2021), 270–276
[29] A. A. Tikhonov, “Resonance phenomena in oscillations of a gravity-oriented rigid body. Pt. 4. Multifrequency resonances”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2000, no. 1, 131–137 (In Russian)
[30] E. A. Kosjakov, A. A. Tikhonov, “Differential equations for librational motion of gravity-oriented rigid body”, International Journal of Non-linear Mechanics, 73 (2015), 51–57 | DOI