Searching for the cost-optimal road trajectory on the relief of the terrain
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 4-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article analyzes the problem of obtaining the cost-optimal trajectory for building a road. Using the apparatus of mathematical modelling, the authors derive the cost functional, the argument of which is the function that describes the path trajectory. The resulting functional after some additional transformations is written in a simpler form. For the problem of the calculus of variations obtained in this manner, an optimality condition is derived. This condition takes into account the specifics of the constructed functional. Unlike the classical Euler—Lagrange condition, it leads not to a differential, but to an integro-differential equation. An illustrative example of the numerical solution of the obtained equation using the methods of computational mathematics is provided.
Mots-clés : calculus of variations
Keywords: optimization, integro-differential equations.
@article{VSPUI_2021_17_1_a0,
     author = {M. E. Abbasov and A. S. Sharlay},
     title = {Searching for the cost-optimal road trajectory on the relief of the terrain},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {4--12},
     year = {2021},
     volume = {17},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a0/}
}
TY  - JOUR
AU  - M. E. Abbasov
AU  - A. S. Sharlay
TI  - Searching for the cost-optimal road trajectory on the relief of the terrain
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2021
SP  - 4
EP  - 12
VL  - 17
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a0/
LA  - ru
ID  - VSPUI_2021_17_1_a0
ER  - 
%0 Journal Article
%A M. E. Abbasov
%A A. S. Sharlay
%T Searching for the cost-optimal road trajectory on the relief of the terrain
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2021
%P 4-12
%V 17
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a0/
%G ru
%F VSPUI_2021_17_1_a0
M. E. Abbasov; A. S. Sharlay. Searching for the cost-optimal road trajectory on the relief of the terrain. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 17 (2021) no. 1, pp. 4-12. http://geodesic.mathdoc.fr/item/VSPUI_2021_17_1_a0/

[1] Douglas D. H., “Least cost path in GIS using an accumulated cost surface and slope lines”, Cartographica, 31 (1994), 37–51 | DOI

[2] Tomlin D., “Propagating radial waves of travel cost in a Grid”, International Journal of Geographical Information Science, 24:9 (2010), 1391–1413 | DOI

[3] Yu C., Lee J., Munro-Stasiuk M., “Extensions to least-cost path algorithms for roadway planning”, International Journal of Geographical Information Science, 17:4 (2003), 361–376 | DOI

[4] Elsgolc L. E., Differential equations and calculus of variations, Nauka Publ., M., 1969, 424 pp. (In Russian)

[5] Lyusternik L. A., Lavrentev M. A., Course of calculus of variations, GONTI Publ, M., 1938, 192 pp. (In Russian) | MR

[6] Mordukhovich B. S., Variational analysis and generalized differentiation, v. II, Springer-Verlag Publ, Berlin–Heidelberg, 2006, xxii+610 pp. | MR

[7] Rindler F., Calculus of variations, Springer Intern. Publishing, Berlin, 2018, xii+444 pp. | MR | Zbl

[8] Trenogin V. A., Functional analysis, Nauka Publ, M., 1980, 495 pp. (In Russian)

[9] Bandurin N. G., Gureeva N. A., “A method and a software package for numerical solution of the systems of nonlinear ordinary integrodifferential-algebraic equations”, Mathematical Modeling, 24:2 (2012), 3–16 (In Russian) | MR | Zbl

[10] Kurosh A. G., Higher algebra course, Nauka Publ, M., 1965, 431 pp. (in Russian) | MR

[11] Li X., Zhao G., Li B., “Generating optimal path by level set approach for a mobile robot moving in static/dynamic environments”, Applied Mathematical Modelling, 85 (2020), 210–230 | DOI | MR | Zbl

[12] Sprunk C., Lau B., Pfaff P. et al., “An accurate and efficient navigation system for omnidirectional robots in industrial environments”, Autonomous Robots, 41:2 (2016), 473–493 | DOI