Spatial market equilibrium in the case of linear transportation costs
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 447-454
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we study the spatial market equilibrium in the case of fixed demands and supply values, the requirement of equality in regard to overall supply and overall demand, and linear transportation costs. The problem is formulated as a nonlinear optimization program with dual variables reflecting supply and demand prices. It is shown that the unique equilibrium commodity assignment pattern is obtained explicitly via equilibrium prices. Moreover, it is proved that in order to obtain absolute values of equilibrium prices, it is necessary to establish a certain base market price. Therefore, once the base market price is given, then other prices are adjusted according to spatial market equilibrium.
Keywords: spatial market equilibrium, non-linear optimization, Karush—Kuhn—Tucker conditions.
Mots-clés : multipliers of Lagrange
@article{VSPUI_2020_16_4_a8,
     author = {A. Yu. Krylatov and Yu. E. Lonyagina and R. I. Golubev},
     title = {Spatial market equilibrium in the case of linear transportation costs},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {447--454},
     year = {2020},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a8/}
}
TY  - JOUR
AU  - A. Yu. Krylatov
AU  - Yu. E. Lonyagina
AU  - R. I. Golubev
TI  - Spatial market equilibrium in the case of linear transportation costs
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 447
EP  - 454
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a8/
LA  - en
ID  - VSPUI_2020_16_4_a8
ER  - 
%0 Journal Article
%A A. Yu. Krylatov
%A Yu. E. Lonyagina
%A R. I. Golubev
%T Spatial market equilibrium in the case of linear transportation costs
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 447-454
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a8/
%G en
%F VSPUI_2020_16_4_a8
A. Yu. Krylatov; Yu. E. Lonyagina; R. I. Golubev. Spatial market equilibrium in the case of linear transportation costs. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 447-454. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a8/

[1] P. Samuelson, “Spatial price equilibrium and linear programming”, American Economic Review, 42 (1952), 283–303

[2] T. Takayama, G. Judge, Spatial, temporal price and allocation models, Publ. Co. North-Holland, Amsterdam, 1971, 528 pp.

[3] E. Allevi, A. Gnudi, I. Konnov, “Combined methods for dynamic spatial auction market models”, Optimization and Engineering, 13 (2012), 401–416 | DOI | MR | Zbl

[4] F. Guder, J. Morris, S. Yoon, “Parallel and serial successive overrelaxation for multicommodity spatial price equilibrium problem”, Transportation Science, 26 (1992), 48–58 | DOI | Zbl

[5] A. Migdalas, P. Pardalos, S. Storoy, Parallel computing in optimization, Kluwer Academic Publ., Amsterdam, 1997, 608 pp. | MR | Zbl

[6] A. Nagurney, C. Nicholson, P. Bishop, “Massively parallel computation of large-scale spatial price equilibrium models with discriminatory ad valorem tariffs”, Annals of Operations Research, 68 (1996), 281–300 | DOI | MR | Zbl

[7] W. Sharpe, “Capital asset prices: A theory of market equilibrium under conditions of risk”, Journal of Finance, 19 (1964), 425–442

[8] I. Konnov, Equilibrium models and variational inequalities, Elsevier Press, Amsterdam, 2007, 250 pp. | MR

[9] A. Krylatov, V. Zakharov, T. Tuovinen, Optimization models and methods for equilibrium traffic assignment, Springer International Publ., Cham, Switzerland, 2020, 239 pp. | MR

[10] M. Patriksson, The traffic assignment problem: models and methods, Dover Publ., New York, 1994, 222 pp.

[11] S. Dafermos, “Traffic equilibrium and variational inequalities”, Transportation Science, 14 (1980), 42–54 | DOI | MR

[12] A. Krylatov, V. Zakharov, “Competitive traffic assignment in a green transit network”, International Game Theory Review, 18:2 (2016), 1640003 | DOI | MR | Zbl

[13] A. Krylatov, V. Zakharov, I. Malygin, “Competitive traffic assignment in road networks”, Transport and Telecommunication, 17:3 (2016), 212–221 | DOI | MR

[14] V. Zakharov, A. Krylatov, “Transit Network Design for Green Vehicles Routing”, Advances in Intelligent Systems and Computing, 360 (2015), 449–458 | DOI | Zbl

[15] E. Anderson, A. Philpott, “Optimal offer construction in electricity markets”, Mathematics of Operations Research, 27 (2002), 82–100 | DOI | MR | Zbl

[16] I. Popov, A. Krylatov, V. Zakharov, D. Ivanov, “Competitive energy consumption under transmission constraints in a multi-supplier power grid system”, International Journal of Systems Science, 48:5 (2017), 994–1001 | DOI | MR | Zbl

[17] C. Courcoubetis, R. Weber, Pricing communications networks: Economics, technology and modelling, Wiley Publ., New York, 2003, 380 pp.

[18] A. Nagurney, Network economics: a variational inequality approach, Kluwer Academic Publ., Amsterdam, 1993, 347 pp. | MR | Zbl