Mots-clés : solution limit.
@article{VSPUI_2020_16_4_a6,
author = {Kh. A. Khachatryan and H. S. Petrosyan},
title = {On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {423--436},
year = {2020},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/}
}
TY - JOUR AU - Kh. A. Khachatryan AU - H. S. Petrosyan TI - On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 423 EP - 436 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/ LA - ru ID - VSPUI_2020_16_4_a6 ER -
%0 Journal Article %A Kh. A. Khachatryan %A H. S. Petrosyan %T On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 423-436 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/ %G ru %F VSPUI_2020_16_4_a6
Kh. A. Khachatryan; H. S. Petrosyan. On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 423-436. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/
[1] I. Ya. Arefeva, B. G. Dragovic, I. V. Volovich, “Open and closed p-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR
[2] V. S. Vladimirov, “Nonlinear equations for p-adic open, closed, and open-closed strings”, Theor. and Math. Phys., 149:3 (2006), 354–367 (In Russian) | MR | Zbl
[3] L. Brekke, P. G. O. Freund, “p-Adic numbers in physics”, Phys. Rep, 233:1 (1993), 1–66 | DOI | MR
[4] Kh. A. Khachatryan, “Solvability of some classes of nonlinear singular boundary value problems in the theory of p-adic open-closed strings”, Theor. and Math. Phys., 200:1 (2019), 106–117 (In Russian) | MR | Zbl
[5] Kh. A. Khachatryan, “On the solvability of some nonlinear boundary value problems for convolution type singular integral equations”, Trudy MMO, 81, no. 1, 2020, 3–40 (In Russian) | Zbl
[6] U. Rudin, Functional analysis, McGraw-Hill Science/Engineering/Math. Publ., London, 1973, 448 pp. | MR | Zbl
[7] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, 5th ed., Nauka, M., 1981, 544 pp. (In Russian) | MR
[8] Kh. A. Khachatryan, “Existence and uniqueness of the solution of one boundary value problem for the convolution integral equation with monotonic nonlinearity”, Izvestiya. Mathematics, 84:4 (2020), 807–815 | DOI | MR | Zbl
[9] Kh. A. Khachatryan, “The solvability of a system of nonlinear integral equations of Hammerstein type on the whole line”, Proceedings of Saratov University. Series Mathematics. Mechanics. Informatics, 19:2 (2019), 164–181 (In Russian) | MR | Zbl
[10] I. Ya. Aref'eva, A. S. Koshelev, L. V. Joukovskaya, “Time evolution in superstring field theory on non-BPS brane. I. Rolling tachyon and energy-momentum conservation”, J. High Energy Phys., 012:9 (2003), 1–15 | MR
[11] I. Ya. Aref'eva, “Rolling tachyon on non-BPS branes and p-adic strings”, Proceedings of V.A. Steklov Mathem. institute, 245, 2004, 40–47 (In Russian) | Zbl
[12] K. Ohmori, “Toward open-closed string theoretical description of rolling tachyon”, Phys. Rev. D, 69:2 (2004), 026008, arXiv: hep-th/0306096 | DOI | MR