On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 423-436
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers a boundary value problem for a class of singular integral equations with an almost total-difference kernel and convex nonlinearity on the positive half-line. This problem arises in the dynamic theory of $ p $-adic open-closed strings. It is proved that any non-negative and bounded solution of a given boundary value problem is a continuous function and the difference between the limit and the solution is itself an integrable function on the positive half-line. For a particular case, it is proved that the solution is a monotonically non-decreasing function. A uniqueness theorem is established in the class of nonnegative and bounded functions. At the conclusion of the article, a specific applied example of this boundary problem is given.
Keywords: boundary value problem, convexity, continuity, summability, monotonicity
Mots-clés : solution limit.
@article{VSPUI_2020_16_4_a6,
     author = {Kh. A. Khachatryan and H. S. Petrosyan},
     title = {On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {423--436},
     year = {2020},
     volume = {16},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - H. S. Petrosyan
TI  - On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 423
EP  - 436
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/
LA  - ru
ID  - VSPUI_2020_16_4_a6
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A H. S. Petrosyan
%T On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 423-436
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/
%G ru
%F VSPUI_2020_16_4_a6
Kh. A. Khachatryan; H. S. Petrosyan. On the qualitative properties of the solution of a nonlinear boundary value problem in the dynamic theory of $p$-adic strings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 423-436. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a6/

[1] I. Ya. Arefeva, B. G. Dragovic, I. V. Volovich, “Open and closed p-adic strings and quadratic extensions of number fields”, Phys. Lett. B, 212:3 (1988), 283–291 | DOI | MR

[2] V. S. Vladimirov, “Nonlinear equations for p-adic open, closed, and open-closed strings”, Theor. and Math. Phys., 149:3 (2006), 354–367 (In Russian) | MR | Zbl

[3] L. Brekke, P. G. O. Freund, “p-Adic numbers in physics”, Phys. Rep, 233:1 (1993), 1–66 | DOI | MR

[4] Kh. A. Khachatryan, “Solvability of some classes of nonlinear singular boundary value problems in the theory of p-adic open-closed strings”, Theor. and Math. Phys., 200:1 (2019), 106–117 (In Russian) | MR | Zbl

[5] Kh. A. Khachatryan, “On the solvability of some nonlinear boundary value problems for convolution type singular integral equations”, Trudy MMO, 81, no. 1, 2020, 3–40 (In Russian) | Zbl

[6] U. Rudin, Functional analysis, McGraw-Hill Science/Engineering/Math. Publ., London, 1973, 448 pp. | MR | Zbl

[7] A. N. Kolmogorov, S. V. Fomin, Elements of the theory of functions and functional analysis, 5th ed., Nauka, M., 1981, 544 pp. (In Russian) | MR

[8] Kh. A. Khachatryan, “Existence and uniqueness of the solution of one boundary value problem for the convolution integral equation with monotonic nonlinearity”, Izvestiya. Mathematics, 84:4 (2020), 807–815 | DOI | MR | Zbl

[9] Kh. A. Khachatryan, “The solvability of a system of nonlinear integral equations of Hammerstein type on the whole line”, Proceedings of Saratov University. Series Mathematics. Mechanics. Informatics, 19:2 (2019), 164–181 (In Russian) | MR | Zbl

[10] I. Ya. Aref'eva, A. S. Koshelev, L. V. Joukovskaya, “Time evolution in superstring field theory on non-BPS brane. I. Rolling tachyon and energy-momentum conservation”, J. High Energy Phys., 012:9 (2003), 1–15 | MR

[11] I. Ya. Aref'eva, “Rolling tachyon on non-BPS branes and p-adic strings”, Proceedings of V.A. Steklov Mathem. institute, 245, 2004, 40–47 (In Russian) | Zbl

[12] K. Ohmori, “Toward open-closed string theoretical description of rolling tachyon”, Phys. Rev. D, 69:2 (2004), 026008, arXiv: hep-th/0306096 | DOI | MR