@article{VSPUI_2020_16_4_a4,
author = {V. V. Provotorov and S. M. Sergeev and V. N. Hoang},
title = {Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {402--414},
year = {2020},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a4/}
}
TY - JOUR AU - V. V. Provotorov AU - S. M. Sergeev AU - V. N. Hoang TI - Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 402 EP - 414 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a4/ LA - en ID - VSPUI_2020_16_4_a4 ER -
%0 Journal Article %A V. V. Provotorov %A S. M. Sergeev %A V. N. Hoang %T Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 402-414 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a4/ %G en %F VSPUI_2020_16_4_a4
V. V. Provotorov; S. M. Sergeev; V. N. Hoang. Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 402-414. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a4/
[1] J. L. Lions, Some methods of solving non-linear boundary value problems, Mir, M., 1972, 587 pp. (In Russian) | MR
[2] O. A. Ladyzhenskaya, Boundary value problems of mathematical physics, Nauka, M., 1973, 407 pp. (In Russian) | MR
[3] V. V. Provotorov, S. M. Sergeev, A. A. Part, “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 107–117 | DOI | MR
[4] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of nonlinear initial boundary value problem with distributed parameters in the netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI | MR
[5] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, “On a 3D model of nonisothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI
[6] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In Russian) | DOI | MR
[7] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 431–443 | DOI | MR
[8] A. P. Zhabko, K. B. Nurtazina, V. V. Provotorov, “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 323–336 | DOI | MR
[9] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187–198 | DOI | MR
[10] A. P. Zhabko, A. I. Shindyapin, V. V. Provotorov, “Stability of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:4 (2019), 457–471 | DOI | MR
[11] A. S. Volkova, V. V. Provotorov, “Generalized solutions and generalized eigenfunctions of boundary-value problems on a geometric graph”, Russian Mathematics, 58:3 (2014), 1–13 | DOI | MR | Zbl
[12] V. V. Provotorov, “Eigenfunctions of the Sturm-Liouville problem on astar graph”, Sbornik Mathematics, 199:10 (2008), 1523–1545 | DOI | MR | Zbl
[13] V. V. Provotorov, “Expansion of eigenfunctions of Sturm-Liouville problem on astar graph”, Russian Mathematics, 3 (2008), 45–57 (In Russian) | DOI | MR | Zbl
[14] J. Neuman, R. D. Richtmyer, “A method for the numerical calculation of hydrodynamic shocks”, Journal of Appl. Phys., 21:3 (1950), 37–52 | MR
[15] G. I. Marchuk, Methods of computational mathematics, Nauka, M., 1977, 456 pp. (In Russian) | MR
[16] V. V. Provotorov, “Boundary control of a parabolic system with delay and distributed parameters on the graph”, International Conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (St. Petersburg, Russia, 2015), 126–128
[17] S. L. Podvalny, E. S. Podvalny, V. V. Provotorov, “The controllability of parabolic systems with delay and distributed parameters on the graph”, Procedia Computer Sciense, 103 (2017), 324–330 | DOI
[18] S. L. Podvalny, V. V. Provotorov, “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)
[19] V. V. Karelin, “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)
[20] V. V. Karelin, V. M. Bure, M. V. Svirkin, “The generalized model of information dissemination in continuous time”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 74–80 (In Russian) | DOI | MR
[21] I. V. Alexandrova, A. P. Zhabko, “A new LKF approach to stability analysis of linear systems with uncertain delays”, Automatica, 91 (2018), 173–178 | DOI | MR | Zbl
[22] A. Aleksandrov, E. Aleksandrova, A. Zhabko, “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[23] A. Aleksandrov, E. Aleksandrova, A. Zhabko, “Asymptotic stability conditions of solutions for nonlinear multiconnected time-delay systems”, Circuits Systems and Signal Processing, 35:10 (2016), 3531–3554 | DOI | MR | Zbl
[24] E. I. Veremey, M. V. Sotnikova, “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (In Russian)
[25] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence”, Electronic Journal of Differential Equations, 140 (2017), 1–10 | MR
[26] S. Krasnov, S. Sergeev, A. Titov, Y. Zotova, “Modelling of digital communication surfaces for products and services promotion”, International Scientific Conference “Digital Transformation on Manufacturing, Infrastructure and Service” (St. Petersburg, Russia, 2019), IOP Conference Series: Materials Science and Engineering, 497, 012032 | DOI
[27] L. N. Borisoglebskaya, E. N. Provotorova, S. M. Sergeev, A. P. Khudyakov, “Automated storage and retrieval system for Industry 4.0 concept”, International Scientific Workshop “Advanced Technologies in Material Science, Mechanical and Automation Engineering”, MIP: ENGINEERING-2019, IOP Conference. Series Mater. Sci. Eng., 537, 2019, 032036 | DOI