Statistical criteria for the limits of application of Hooke's law
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 391-401
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modern methods for studying the stress-strain state of solids use graphical methods based on a stress-strain curve to determine the transition from elastic deformation to plastic deformation. However, this approach is not formal and it is intended only for when stress is a function of strain in the one-dimensional case. Cases, when strain is a function of the stress, are also of practical importance. The purpose of the study is to develop formal rules for determining the limits of applicability of Hooke's law. The proposed analytical methods for determining the transition from elastic deformation to plastic deformation are based on consistent statistical sequential. In this article, quadratic forms are derived for calculating the point at which the type of an increasing monotonous numerical sequence changes from linear to non-linear type. With the help of these quadratic forms, statistical criteria (approximation-estimation tests) are constructed to determine the limits of applicability for Hooke's law. These boundaries are defined as Markov moments. The novelty of the results shows that it is possible to determine the yield point without visualizing the experimental data. The numerical example of the application of a parabolic approximation-estimation test is provided. From the results of this experiment, it can be concluded that the analytical determination of the limits of applicability of Hooke's law coincides with a visual assessment. Approximation-estimation tests provide an opportunity to determine the limits of applicability of Hooke's law analytically.
Keywords: Hooke's law, stress, strain, approximation-estimation test, least squares method
Mots-clés : Markov moments.
@article{VSPUI_2020_16_4_a3,
     author = {A. V. Orekhov},
     title = {Statistical criteria for the limits of application of {Hooke's} law},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {391--401},
     year = {2020},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a3/}
}
TY  - JOUR
AU  - A. V. Orekhov
TI  - Statistical criteria for the limits of application of Hooke's law
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 391
EP  - 401
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a3/
LA  - en
ID  - VSPUI_2020_16_4_a3
ER  - 
%0 Journal Article
%A A. V. Orekhov
%T Statistical criteria for the limits of application of Hooke's law
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 391-401
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a3/
%G en
%F VSPUI_2020_16_4_a3
A. V. Orekhov. Statistical criteria for the limits of application of Hooke's law. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 391-401. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a3/

[1] S. Timoshenko, Strength of materials, 3rd ed., Krieger Publ. Co, Malabar, Florida, 1983, 1010 pp.

[2] F. Beer, J. Jr. E. Russell, J. DeWolf, D. Mazurek, Mechanics of materials, 7th ed., McGraw Hill Education Publ., New York, 2014, 896 pp.

[3] Ya. B. Friedman, Mechanical properties of metals, v. 1, The deformation and fracture, Mashinostroyeniye, M., 1974, 472 pp. (In Russian)

[4] S. Schneider, S. G. Schneider, H. M. da Silva, C. De Moura Neto, “Study of the non-linear stressstrain behavior in Ti-Nb-Zr alloys”, Materials Research, 8 (2005), 435–438 | DOI

[5] S. G. Schneider, C. A. Nunes, S. O. Rogero, O. Z. Higa, J. C. Bressianil, “Mechanical properties and cytotoxic evaluation of the Ti-3Nb-13Zr alloy”, Biomechanica, 8:1 (2000), 84–87

[6] G. V. Pavilainen, R. Yu. Yushin, “Analysis of taking into account elastic transversal isotropy and plastic anisotropy when bending round plates”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2011, no. 1, 122–131 (In Russian)

[7] G. V. Pavilainen, R. Yu. Yushin, “An approximate solution of elastic-plastic problem of circular strength different (SD) plates”, Constructive Nonsmooth Analysis and Related Topics (dedicated to the memory of V. F. Demyanov), CNSA 2017, IEEE, 2017, 7973999 | DOI

[8] Atlas of stress-strain curves, 2nd ed., ASM International Press, United States, 2002, 816 pp.

[9] A. Sluzalec, “Stress-strain curve”, Introduction to nonlinear thermomechanics, Springer Press, London, 1992, 45–47 | DOI

[10] T. Kariya, H. Kurata, Generalized least squares, John Wiley Sons, Ltd. Publ., England, Chichester, West Sussex, 2004, 307 pp. | MR | Zbl

[11] D. G. Luenberger, Optimization by vector space methods, Wiley-Interscience Press, London, 1969, 344 pp. | MR | Zbl

[12] S. Lang, Algebra, Springer-Verlag Press, New York, 2002, xv+914 pp. | MR | Zbl

[13] G. Shimura, Arithmetic of quadratic forms, Springer-Verlag Press, New York, 2010, xii+238 pp. | MR | Zbl

[14] A. V. Orekhov, “Criterion for estimation of stress-deformed state of SD-materials”, AIP Publ, AIP Conference Proceedings, 1959, 2018, 070028 | DOI

[15] A. V. Orekhov, “Approximation-evaluation tests for a stress-strain state of deformable solids”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:3 (2018), 230–242 (In Russian) | DOI | MR

[16] V. Krishnan, Probability, random processes, John Wiley Sons, Inc. Publ, Hoboken, New Jersey, 2006, 723 pp. | MR | Zbl

[17] O. Ibe, Fundamentals of applied probability and random processes, Academic Press, San Diego, 2014, 456 pp. | Zbl

[18] E. L. Lehmann, J. P. Romano, Testing Statistical Hypotheses, Springer-Verlag Press, New York, 2005, xiv+786 pp. | MR | Zbl

[19] A. Wald, Sequential Analysis, John Wiley Sons, Inc. Publ., New York, 1947, 212 pp. | MR

[20] Y. S. Chow, Great expectations: the theory of optimal stopping, Houghton Mifflin Press, Boston, 1971, 139 pp. | MR | Zbl

[21] A. N. Sirjaev, Statistical sequential analysis: Optimal stopping rules, American Mathematical Society Press, New York, 1973, 174 pp. | MR | Zbl

[22] K. L. Chung, Lectures from Markov processes to Brownian, Grundlehren Der Mathematischen Wissenschaften, Springer-Verlag Press, New York, 1982, vii+242 pp. | DOI | MR | Zbl

[23] A. N. Shiryaev, Optimal stopping rules, Springer-Verlag Press, Berlin–Heidelberg, 2008, xii+220 pp. | DOI | MR | Zbl