@article{VSPUI_2020_16_4_a2,
author = {V. M. Malkov and Yu. V. Malkova},
title = {The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {375--390},
year = {2020},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a2/}
}
TY - JOUR AU - V. M. Malkov AU - Yu. V. Malkova TI - The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 375 EP - 390 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a2/ LA - ru ID - VSPUI_2020_16_4_a2 ER -
%0 Journal Article %A V. M. Malkov %A Yu. V. Malkova %T The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 375-390 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a2/ %G ru %F VSPUI_2020_16_4_a2
V. M. Malkov; Yu. V. Malkova. The study of nonlinear deformation of a plane with an elliptical inclusion for harmonic materials. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 375-390. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a2/
[1] F. John, “Plane strain problems for a perfectly elastic material of harmonic type”, Commun. Pure and Applied Mathematics, 13:2 (1960), 239–296 | DOI | MR | Zbl
[2] A. I. Lurie, Non-linear elasticity, Nauka, M., 1980, 512 pp. (In Russian)
[3] A. I. Lurie, Theory of elasticity, Nauka, M., 1970, 940 pp. (In Russian)
[4] N. F. Morozov, Mathematical problems theory of cracks, Nauka, M., 1984, 256 pp. (In Russian) | MR
[5] L. M. Zubov, Nonlinear theory of dislocations and declinations in elastic bodies, Springer, Berlin, 1997, 205 pp. | MR
[6] V. M. Malkov, Yu. V. Malkova, “Plane problems of elasticity for semi-linear material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2012, no. 3, 93–106 (In Russian)
[7] V. M. Malkov, Yu. V. Malkova, “Plane problems on concentrated forces for semi-linear material”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 83–96 (In Russian)
[8] V. M. Malkov, Yu. V. Malkova, “Stresses analysis of a plane with elliptical inclusion for the model of the semi-linear material”, Intern. Conference on Mechanics — Eigth Polyakhov's Reading, AIP Conference Proceedings, 1959, 2018, 070022, 1–8 | DOI
[9] E. Varley, E. Cumberbatch, “Finite deformation of elastic materials surrounding cylindrical holes”, Journal of Elasticity, 10:4 (1980), 341–405 | DOI | Zbl
[10] C. Q. Ru, “On complex-variable formulation for finite plane elastostatics of harmonic materials”, Acta Mechanica, 156:3–4 (2002), 219–234 | Zbl
[11] C. Q. Ru, P. Schiavone, L. J. Sudak, A. Mioduchowski, “Uniformity of stresses inside an elliptic inclusion in finite plane elastostatics”, Intern. Journal of Non-linear mechanics, 38:2–3 (2005), 281–287 | MR
[12] V. M. Malkov, Yu. V. Malkova, “Plane problem of non-linear elasticity for harmonic material”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2008, no. 3, 114–126 (In Russian)
[13] Y. V. Malkova, V. M. Malkov, “Large deformation of a plate with an elastic elliptic inclusion for John's harmonic material”, Stability and Control Processes, SCP 2015 Intern. Conference, in memory of V. I. Zubov (Saint Petersburg, 2015), 410–413 | MR
[14] T. Domanskaia, V. Malkov, Yu. Malkova, “Bi-material plane of John's harmonic material with a point force at interface”, XXIV Intern. Congress of Theor. and Appl. Mech. (ICTAM) (21–26 August 2016, Montreal, Canada), 1958–1959
[15] V. M. Malkov, Yu. V. Malkova, T. O. Domanskaya, “Analysis of stresses of bi-material plane and half-plane at action of a point force for two models of harmonic materials”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 1, 38–52 (In Russian)
[16] V. M. Malkov, Yu. V. Malkova, “Modeling nonlinear deformation of a plate with an elliptic hole or inclusion by John's harmonic material”, Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy, 4(62):1 (2017), 121–130 (In Russian) | DOI | MR
[17] V. M. Malkov, Yu. V. Malkova, “Modeling nonlinear deformation of a plate with an elliptic inclusion by John's harmonic material”, Vestnik Saint Petersburg University. Mathematics, 50:1 (2017), 74–81 | DOI | MR | Zbl
[18] Wang Xu, “Three-phase elliptical inclusion with internal uniform hydrostatic stresses in finite plane elastostatics”, Acta Mechanica, 219:1–2 (2011), 93–97 | MR
[19] L. T. Wheeler, “Finite deformation of a harmonic elastic medium containing an ellipsoidal cavity”, Intern. Journal of Solids Struct., 21 (1985), 799–804 | DOI | Zbl
[20] V. M. Malkov, Yu. V. Malkova, R. R. Petrukhin, “Interaction of an elliptic hole with interface of two bonded half-planes”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2016, no. 3, 73–87 (In Russian)
[21] V. M. Malkov, Yu. V. Malkova, “Deformation of a plate with elliptic elastic inclusion”, Vestnik Saint Petersburg University. Mathematics. Mechanics. Astronomy, 2(60):4 (2015), 617–632 (In Russian) | MR
[22] V. M. Malkov, Introduction to non-linear elasticity, Saint Petersburg University Press, Saint Petersburg, 2010, 276 pp. (In Russian)
[23] N. I. Muskhelishvili, Some basic problems of mathematical theory of elasticity, Nauka, M., 1966, 708 pp. (In Russian) | MR