@article{VSPUI_2020_16_4_a10,
author = {A. S. Popkov},
title = {Optimal program control in the class of quadratic splines for linear systems},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {462--470},
year = {2020},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/}
}
TY - JOUR AU - A. S. Popkov TI - Optimal program control in the class of quadratic splines for linear systems JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 462 EP - 470 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/ LA - en ID - VSPUI_2020_16_4_a10 ER -
%0 Journal Article %A A. S. Popkov %T Optimal program control in the class of quadratic splines for linear systems %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 462-470 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/ %G en %F VSPUI_2020_16_4_a10
A. S. Popkov. Optimal program control in the class of quadratic splines for linear systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 462-470. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/
[1] J. J. Park, B. Kuipers, “A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment”, 2011 IEEE International Conference on Robotics and Automation, 2011, 4896–4902
[2] A. S. Popkov, “Application of the adaptive method for optimal stabilization of a nonlinear object”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2016, 1–3
[3] A. S. Popkov, N. V. Smirnov, T. E. Smirnova, “On modification of the positional optimization method for a class of nonlinear systems”, ACM International Conference Proceeding Series, 2018, 46–51
[4] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Numerical methods of program and positional optimization of linear control systems”, Journal of Computational Mathematics and Mathematical Physics, 40:6 (2000), 838–859 (In Russian) | MR | Zbl
[5] D. V. Girdyuk, N. V. Smirnov, T. E. Smirnova, “Optimal control of the profit tax rate based on the nonlinear dynamic input-output model”, ACM International Conference Proceeding Series, 2018, 80–84
[6] O. V. Baranov, N. V. Smirnov, T. E. Smirnova, Y. V. Zholobov, “Design of a quadrocopter with PID-controlled fail-safe algorithm”, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 11:2 (2020), 23–33 | MR
[7] GAMS Development Corporation: Solver Manuals, (accessed: September 15, 2020) http://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES
[8] L. K. Babadzanjanz, I. Yu. Pototskaya, Control by expense criteria in mechanical systems, Saint Petersburg State University Press, St. Petersburg, 2003, 137 pp. (In Russian)