Optimal program control in the class of quadratic splines for linear systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 462-470
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article describes an algorithm for solving the optimal control problem in the case when the considered process is described by a linear system of ordinary differential equations. The initial and final states of the system are fixed and straight two-sided constraints for the control functions are defined. The purpose of optimization is to minimize the quadratic functional of control variables. The control is selected in the class of quadratic splines. There is some evolution of the method when control is selected in the class of piecewise constant functions. Conveniently, due to the addition/removal of constraints in knots, the control function can be piecewise continuous, continuous, or continuously differentiable. The solution algorithm consists in reducing the control problem to a convex mixed-integer quadratically-constrained programming problem, which could be solved by using well-known optimization methods that utilize special software.
Keywords: optimal control, differential equations, linear control system, quadratic spline, mixed-integer quadratically-constrained programming.
@article{VSPUI_2020_16_4_a10,
     author = {A. S. Popkov},
     title = {Optimal program control in the class of quadratic splines for linear systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {462--470},
     year = {2020},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/}
}
TY  - JOUR
AU  - A. S. Popkov
TI  - Optimal program control in the class of quadratic splines for linear systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 462
EP  - 470
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/
LA  - en
ID  - VSPUI_2020_16_4_a10
ER  - 
%0 Journal Article
%A A. S. Popkov
%T Optimal program control in the class of quadratic splines for linear systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 462-470
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/
%G en
%F VSPUI_2020_16_4_a10
A. S. Popkov. Optimal program control in the class of quadratic splines for linear systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 462-470. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a10/

[1] J. J. Park, B. Kuipers, “A smooth control law for graceful motion of differential wheeled mobile robots in 2D environment”, 2011 IEEE International Conference on Robotics and Automation, 2011, 4896–4902

[2] A. S. Popkov, “Application of the adaptive method for optimal stabilization of a nonlinear object”, 2016 International Conference Stability and Oscillations of Nonlinear Control Systems (Pyatnitskiy's Conference), 2016, 1–3

[3] A. S. Popkov, N. V. Smirnov, T. E. Smirnova, “On modification of the positional optimization method for a class of nonlinear systems”, ACM International Conference Proceeding Series, 2018, 46–51

[4] N. V. Balashevich, R. Gabasov, F. M. Kirillova, “Numerical methods of program and positional optimization of linear control systems”, Journal of Computational Mathematics and Mathematical Physics, 40:6 (2000), 838–859 (In Russian) | MR | Zbl

[5] D. V. Girdyuk, N. V. Smirnov, T. E. Smirnova, “Optimal control of the profit tax rate based on the nonlinear dynamic input-output model”, ACM International Conference Proceeding Series, 2018, 80–84

[6] O. V. Baranov, N. V. Smirnov, T. E. Smirnova, Y. V. Zholobov, “Design of a quadrocopter with PID-controlled fail-safe algorithm”, Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 11:2 (2020), 23–33 | MR

[7] GAMS Development Corporation: Solver Manuals, (accessed: September 15, 2020) http://www.gams.com/latest/docs/S_MAIN.html#SOLVERS_MODEL_TYPES

[8] L. K. Babadzanjanz, I. Yu. Pototskaya, Control by expense criteria in mechanical systems, Saint Petersburg State University Press, St. Petersburg, 2003, 137 pp. (In Russian)