@article{VSPUI_2020_16_4_a1,
author = {N. K. Krivulin and E. Yu. Romanova},
title = {Approximate factorization of positive matrices by using methods of tropical optimization},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {357--374},
year = {2020},
volume = {16},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a1/}
}
TY - JOUR AU - N. K. Krivulin AU - E. Yu. Romanova TI - Approximate factorization of positive matrices by using methods of tropical optimization JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 357 EP - 374 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a1/ LA - ru ID - VSPUI_2020_16_4_a1 ER -
%0 Journal Article %A N. K. Krivulin %A E. Yu. Romanova %T Approximate factorization of positive matrices by using methods of tropical optimization %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 357-374 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a1/ %G ru %F VSPUI_2020_16_4_a1
N. K. Krivulin; E. Yu. Romanova. Approximate factorization of positive matrices by using methods of tropical optimization. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 357-374. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a1/
[1] A. Aissa-El-Bey, K. Seghouane, “Sparse canonical correlation analysis based on rank-1 matrix approximation and its application for FMRI signals”, 2016 IEEE Intern. Conference on Acoustics, Speech and Signal Processing, ICASSP, IEEE, 2016, 4678–4682 | DOI
[2] R. Kannan, M. Ishteva, H. Park, “Bounded matrix factorization for recommender system”, Knowledge and Information Systems, 39:3 (2014), 491–511 | DOI
[3] X. Xiu, L. Kong, “Rank-one and sparse matrix decomposition for dynamic MRI”, Numerical Algebra, Control and Optimization, 5:2 (2015), 127–134 | DOI | MR | Zbl
[4] M. T. Belachew, N. Gillis, “Solving the maximum clique problem with symmetric rank-one nonnegative matrix approximation”, Journal of Optimization Theory and Applications, 173:1 (2017), 279–296 | DOI | MR | Zbl
[5] N. Krivulin, “Rating alternatives from pairwise comparisons by solving tropical optimization problems”, 2015 12th Intern. Conference on Fuzzy Systems and Knowledge Discovery, FSKD, IEEE, 2015, 162–167 | DOI
[6] N. Krivulin, “Using tropical optimization techniques to evaluate alternatives via pairwise comparisons”, 2016 Proceedings of the 7th SIAM Workshop on Combinatorial Scientific Computing, SIAM, 2016, 62–72 | DOI
[7] N. Gillis, “Introduction to nonnegative matrix factorization”, SIAG/OPT Views and News, 25:1 (2017), 7–16 | MR
[8] N. K. Kumar, J. Schneider, “Literature survey on low rank approximation of matrices”, Linear and Multilinear Algebra, 65:11 (2017), 2212–2244 | DOI | MR | Zbl
[9] D. Feldman, T. Tassa, “More constraints, smaller coresets: constrained matrix approximation of sparse big data”, Proceedings of the 21st ACM SIGKDD Intern. Conference on Knowledge Discovery and Data Mining, ACM, New York, 2015, 249–258 | DOI
[10] A. Kyrillidis, “Simple and practical algorithms for p-norm low-rank approximation”, 34th Conference on Uncertainty in Artificial Intelligence, AUAI Press, Corvallis, 2018, 414–424
[11] N. Gillis, Y. Shitov, “Low-rank matrix approximation in the infinity norm”, Linear Algebra and its Applications, 581:15 (2019), 367–382 | DOI | MR | Zbl
[12] A. Panyukov, K. Chaloob, Y. Mezal, “Approximation of a matrix with positive elements by a matrix of a unit rank”, 2018 IEEE Symposium on Computer Applications and Industrial Electronics, ISCAIE, IEEE, 2018, 234–237 | DOI
[13] N. K. Krivulin, E. Yu. Romanova, “Rank-one approximation of positive matrices based on methods of tropical mathematics”, Vestnik Saint Petersburg University. Mathematics, 51:2 (2018), 133–143 | DOI | MR | Zbl
[14] N. K. Krivulin, E. Yu. Romanova, “On the rank-one approximation of positive matrices using tropical optimization methods”, Vestnik Saint Petersburg University. Mathematics, 52:2 (2019), 145–153 | DOI | MR | Zbl
[15] Maslov V. P., Kolokol'tsov V. N., Idempotent analysis and its applications in optimal control, Fizmatlit Publ., M., 1994, 144 pp. (In Russian) | MR
[16] B. Heidergott, G. J. Olsder, J. van der Woude, Max Plus at work, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, 2006, 226 pp. | MR | Zbl
[17] W. M. McEneaney, Max-plus methods for nonlinear control and estimation, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 2006, 241 pp. | DOI | MR | Zbl
[18] Krivulin N. K., Methods of idempotent algebra for problems in modeling and analysis of complex systems, Saint Petersburg University Press, Saint Petersburg, 2009, 256 pp. (In Russian)
[19] P. Butkovič, Max-linear systems, Springer Monographs in Mathematics, Springer, London, 2010, 272 pp. | DOI | MR | Zbl
[20] N. Krivulin, “A constrained tropical optimization problem: Complete solution and application example”, Tropical and Idempotent Mathematics and Applications, Contemporary Mathematics, 616, AMS, Providence, 2014, 163–177 | DOI | MR | Zbl
[21] N. Krivulin, “Tropical optimization problems”, Advances in Economics and Optimization, Economic Issues, Problems and Perspectives, Nova Science Publ., New York, 2014, 195–214 | MR
[22] N. Krivulin, “Extremal properties of tropical eigenvalues and solutions to tropical optimization problems”, Linear Algebra and its Applications, 468 (2015), 211–232 | DOI | MR | Zbl
[23] N. Krivulin, “A multidimensional tropical optimization problem with nonlinear objective function and linear constraints”, Optimization, 64:5 (2015), 1107–1129 | DOI | MR | Zbl