@article{VSPUI_2020_16_4_a0,
author = {A. N. Kirillov and A. M. Sazonov},
title = {The global stability of the {Schumpeterian} dynamical system},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {348--356},
year = {2020},
volume = {16},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/}
}
TY - JOUR AU - A. N. Kirillov AU - A. M. Sazonov TI - The global stability of the Schumpeterian dynamical system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 348 EP - 356 VL - 16 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/ LA - en ID - VSPUI_2020_16_4_a0 ER -
%0 Journal Article %A A. N. Kirillov %A A. M. Sazonov %T The global stability of the Schumpeterian dynamical system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 348-356 %V 16 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/ %G en %F VSPUI_2020_16_4_a0
A. N. Kirillov; A. M. Sazonov. The global stability of the Schumpeterian dynamical system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 348-356. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/
[1] J. Schumpeter, Theorie der wirtschaftlichen Entwicklung, Duncker und Humblot Press, Leipzig, 1912, 395 pp.; J. Schumpeter, The theory of economic development, Oxford University Press, Oxford, 1961, 255 pp.
[2] D. Acemoglu, D. Cao, “Innovation by entrants and incumbents”, Journal of Economic Theory, 157 (2015), 255–294 | DOI | MR | Zbl
[3] C. Christensen, M. Raynor, The innovator's solution, Harvard Business School Press, Boston, 2003, 265 pp. | MR
[4] P. Klimek, R. Hausmann, S. Thurner, “Empirical confirmation of creative destruction from world trade data”, CID Working Paper, 238 (2012), 1–13
[5] K. Iwai, “Schumpeterian dynamics. Pt 1. An evolutionary model of innovation and imitation”, Journal of Economic Behavior and Organization, 5:2 (1984), 159–190 | DOI
[6] K. Iwai, “Schumpeterian dynamics. Pt 2. Technological progress, firm growth andeconomic selection”, Journal of Economic Behavior and Organization, 5:3–4 (1984), 321–351 | DOI
[7] G. M. Henkin, V. M. Polterovich, “A difference-differential analogue of the Burgers equation: stability of the two-wave behavior”, Journal of Nonlinear Science, 4 (1994), 497–517 | DOI | MR | Zbl
[8] V. M. Polterovich, G. M. Henkin, “An evolutionary model with interaction of the processes of development and adoption of technologies”, Economics and Mathematical Methods, 24 (1988), 1071–1083 (In Russian) | MR
[9] V. M. Polterovich, G. M. Henkin, “An evolutionary model of economic growth”, Matekon, 26:3 (1990), 44–64 | MR
[10] A. N. Kirillov, A. M. Sazonov, “Global schumpeterian dynamics with structural variations”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 12:3 (2019), 17–27 | Zbl
[11] A. N. Kirillov, A. M. Sazonov, “Global stability in model of non-linear Schumpeterian dynamics”, Transactions of KarRC RAS, 7 (2018), 34–40 (In Russian) | DOI | MR
[12] S. Lefschetz, Differential equations: geometric theory, Princeton University Press, Princeton, 1967, 390 pp.
[13] V. V. Nemytskii, V. V. Stepanov, The qualitative theory of differential equations, Princeton University Press, Princeton, 1960, 523 pp. | MR