The global stability of the Schumpeterian dynamical system
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 348-356
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this article, we present the studies that develop Schumpeter's theory of endogenous evolution of economic systems. An approach to modeling the limitation of economic growth due to the limitation of markets, resource bases and other factors is proposed. For this purpose, the concept of economic niche volume is introduced. The global stability of the equilibrium of the dynamical system with the Jacobi matrix having, at the equilibrium, all eigenvalues equal to zero, except one being negative, is proved. The proposed model makes it possible to evaluate and predict the dynamics of the development of firms in the economic sector.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
dynamical systems, Schumpeterian dynamics, global stability.
                    
                    
                    
                  
                
                
                @article{VSPUI_2020_16_4_a0,
     author = {A. N. Kirillov and A. M. Sazonov},
     title = {The global stability of the {Schumpeterian} dynamical system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {348--356},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/}
}
                      
                      
                    TY - JOUR AU - A. N. Kirillov AU - A. M. Sazonov TI - The global stability of the Schumpeterian dynamical system JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 348 EP - 356 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/ LA - en ID - VSPUI_2020_16_4_a0 ER -
%0 Journal Article %A A. N. Kirillov %A A. M. Sazonov %T The global stability of the Schumpeterian dynamical system %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 348-356 %V 16 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/ %G en %F VSPUI_2020_16_4_a0
A. N. Kirillov; A. M. Sazonov. The global stability of the Schumpeterian dynamical system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 348-356. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/
