The global stability of the Schumpeterian dynamical system
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 348-356
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we present the studies that develop Schumpeter's theory of endogenous evolution of economic systems. An approach to modeling the limitation of economic growth due to the limitation of markets, resource bases and other factors is proposed. For this purpose, the concept of economic niche volume is introduced. The global stability of the equilibrium of the dynamical system with the Jacobi matrix having, at the equilibrium, all eigenvalues equal to zero, except one being negative, is proved. The proposed model makes it possible to evaluate and predict the dynamics of the development of firms in the economic sector.
Keywords: dynamical systems, Schumpeterian dynamics, global stability.
@article{VSPUI_2020_16_4_a0,
     author = {A. N. Kirillov and A. M. Sazonov},
     title = {The global stability of the {Schumpeterian} dynamical system},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {348--356},
     year = {2020},
     volume = {16},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/}
}
TY  - JOUR
AU  - A. N. Kirillov
AU  - A. M. Sazonov
TI  - The global stability of the Schumpeterian dynamical system
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 348
EP  - 356
VL  - 16
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/
LA  - en
ID  - VSPUI_2020_16_4_a0
ER  - 
%0 Journal Article
%A A. N. Kirillov
%A A. M. Sazonov
%T The global stability of the Schumpeterian dynamical system
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 348-356
%V 16
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/
%G en
%F VSPUI_2020_16_4_a0
A. N. Kirillov; A. M. Sazonov. The global stability of the Schumpeterian dynamical system. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 4, pp. 348-356. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_4_a0/

[1] J. Schumpeter, Theorie der wirtschaftlichen Entwicklung, Duncker und Humblot Press, Leipzig, 1912, 395 pp.; J. Schumpeter, The theory of economic development, Oxford University Press, Oxford, 1961, 255 pp.

[2] D. Acemoglu, D. Cao, “Innovation by entrants and incumbents”, Journal of Economic Theory, 157 (2015), 255–294 | DOI | MR | Zbl

[3] C. Christensen, M. Raynor, The innovator's solution, Harvard Business School Press, Boston, 2003, 265 pp. | MR

[4] P. Klimek, R. Hausmann, S. Thurner, “Empirical confirmation of creative destruction from world trade data”, CID Working Paper, 238 (2012), 1–13

[5] K. Iwai, “Schumpeterian dynamics. Pt 1. An evolutionary model of innovation and imitation”, Journal of Economic Behavior and Organization, 5:2 (1984), 159–190 | DOI

[6] K. Iwai, “Schumpeterian dynamics. Pt 2. Technological progress, firm growth andeconomic selection”, Journal of Economic Behavior and Organization, 5:3–4 (1984), 321–351 | DOI

[7] G. M. Henkin, V. M. Polterovich, “A difference-differential analogue of the Burgers equation: stability of the two-wave behavior”, Journal of Nonlinear Science, 4 (1994), 497–517 | DOI | MR | Zbl

[8] V. M. Polterovich, G. M. Henkin, “An evolutionary model with interaction of the processes of development and adoption of technologies”, Economics and Mathematical Methods, 24 (1988), 1071–1083 (In Russian) | MR

[9] V. M. Polterovich, G. M. Henkin, “An evolutionary model of economic growth”, Matekon, 26:3 (1990), 44–64 | MR

[10] A. N. Kirillov, A. M. Sazonov, “Global schumpeterian dynamics with structural variations”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming Computer Software (Bulletin SUSU MMCS), 12:3 (2019), 17–27 | Zbl

[11] A. N. Kirillov, A. M. Sazonov, “Global stability in model of non-linear Schumpeterian dynamics”, Transactions of KarRC RAS, 7 (2018), 34–40 (In Russian) | DOI | MR

[12] S. Lefschetz, Differential equations: geometric theory, Princeton University Press, Princeton, 1967, 390 pp.

[13] V. V. Nemytskii, V. V. Stepanov, The qualitative theory of differential equations, Princeton University Press, Princeton, 1960, 523 pp. | MR