On the theory of constructive construction of a linear controller
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 326-344
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical problem of stationary stabilization with respect to the state of a linear stationary control system is investigated. Efficient, easily algorithmic methods for constructing controllers of controlled systems are considered: the method of V. I. Zubov and the method of P. Brunovsky. The most successful modifications are indicated to facilitate the construction of a linear controller. A new modification of the construction of a linear regulator is proposed using the transformation of the matrix of the original system into a block-diagonal form. This modification contains all the advantages of both V. I. Zubov's method and P. Brunovsky's method, and allows one to reduce the problem with multidimensional control to the problem of stabilizing a set of independent subsystems with scalar control for each subsystem.
Keywords: stabilization of movements, linear regulator, controllable canonical forms.
@article{VSPUI_2020_16_3_a8,
     author = {A. M. Kamachkin and N. A. Stepenko and G. M. Chitrov},
     title = {On the theory of constructive construction of a linear controller},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {326--344},
     year = {2020},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a8/}
}
TY  - JOUR
AU  - A. M. Kamachkin
AU  - N. A. Stepenko
AU  - G. M. Chitrov
TI  - On the theory of constructive construction of a linear controller
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 326
EP  - 344
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a8/
LA  - ru
ID  - VSPUI_2020_16_3_a8
ER  - 
%0 Journal Article
%A A. M. Kamachkin
%A N. A. Stepenko
%A G. M. Chitrov
%T On the theory of constructive construction of a linear controller
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 326-344
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a8/
%G ru
%F VSPUI_2020_16_3_a8
A. M. Kamachkin; N. A. Stepenko; G. M. Chitrov. On the theory of constructive construction of a linear controller. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 326-344. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a8/

[1] V. I. Zubov, Theory of optimal control of a ship and other mobile objects, Sudostroenie Publ., Leningrad, 1966, 352 pp. (In Russian)

[2] E. Ya. Smirnov, Stabilization of program movements, Saint Petersburg University Press, St. Petersburg, 1997, 307 pp. (In Russian)

[3] R. E. Kalman, P. L. Falb, M. A. Arbib, Topics in mathematical system theory, Second ed., McGraw-Hill Book Company, New York, 1969, 358 pp. | MR | Zbl

[4] P. A. Brunovsky, “A classification of linear controllable systems”, Kybernetika, 6:3 (1970), 173–188 | MR | Zbl

[5] G. A. Leonov, M. M. Shumafov, Methods of stabilization of linear controlled systems, Saint Petersburg University Press, St. Petersburg, 2005, 419 pp. (In Russian)

[6] N. V. Smirnov, T. E. Smirnova, G. Sh. Tamasyan, Stabilization of program movements with full and incomplete feedback, SOLO Publ., St. Petersburg, 2013, 131 pp. (In Russian)

[7] D. Luenberger, “Canonical forms for linear multivariable systems”, IEEE Transactions on Automatic Control, 12:3 (1967), 290–293 | DOI | MR

[8] A. M. Kamachkin, V. N. Shamberov, G. M. Chitrov, “Normal matrix forms to decomposition and control problems for manydimentional systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 417–430 | DOI | MR