On practical application of Zubov's optimal damping concept
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 293-315
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents some new ideas connected to nonlinear and nonautonomous control laws based on the application of an optimization approach. There is an essential connection between practical demands and the functionals to be minimized. This connection is at the heart of the proposed methods. The discussion is focused on the optimal damping concept first proposed by V. I. Zubov in the early 1960's. Significant attention is paid to various modern aspects of the optimal damping theory's practical implementation. Emphasis is given to the specific choice of the functional to be damped to provide the desirable stability and performance features of a closed-loop system. The applicability and effectiveness of the proposed approach are confirmed by an illustrative numerical example.
Keywords: feedback, stability, damping control, functional, optimization.
@article{VSPUI_2020_16_3_a6,
     author = {E. I. Veremey},
     title = {On practical application of {Zubov's} optimal damping concept},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {293--315},
     year = {2020},
     volume = {16},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a6/}
}
TY  - JOUR
AU  - E. I. Veremey
TI  - On practical application of Zubov's optimal damping concept
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 293
EP  - 315
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a6/
LA  - en
ID  - VSPUI_2020_16_3_a6
ER  - 
%0 Journal Article
%A E. I. Veremey
%T On practical application of Zubov's optimal damping concept
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 293-315
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a6/
%G en
%F VSPUI_2020_16_3_a6
E. I. Veremey. On practical application of Zubov's optimal damping concept. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 293-315. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a6/

[1] E. D. Sontag, Mathematical control theory: Deterministic finite dimensional systems, 2nd ed., Springer Press, New York, 1998, 544 pp. | MR | Zbl

[2] H. Khalil, Nonlinear systems, Prentice Hall Press, Englewood Cliffs, NJ, 2002, 766 pp. | Zbl

[3] J. Slotine, W. Li, Applied nonlinear control, Prentice Hall Press, Englewood Cliffs, NJ, 1991, 476 pp. | Zbl

[4] L. Lewis, D. L. Vrabie, V. L. Syrmos, Optimal control, John Wiley Sons Press, Hoboken, NJ, 2012, 552 pp. | MR | Zbl

[5] H. P. Geering, Optimal control with engineering applications, Springer-Verlag Press, Berlin–Heidelberg, 2007, 134 pp. | Zbl

[6] R. Sepulchre, V. Jankovic, P. Kokotovic, Constructive nonlinear control, Springer Press, New York, 1997, 324 pp. | MR | Zbl

[7] T. I. Fossen, Guidance and control of ocean vehicles, John Wiley Sons Press, New York, 1999, 480 pp. | MR

[8] K. Do, J. Pan, Control of ships, underwater vehicles. Design for underactuated and nonlinear marine systems, Springer-Verlag Press, London, 2009, 402 pp.

[9] V. I. Zubov, Oscillations in nonlinear and controlled systems, Sudpromgiz Publ., L., 1962, 630 pp. (In Russian) | MR | Zbl

[10] V. I. Zubov, Theory of optimal control of ships and other moving objects, Sudpromgiz Publ., L., 1966, 352 pp. (In Russian)

[11] V. I. Zubov, Theorie de la Commande, Mir, M., 1978, 470 pp. | MR | Zbl

[12] Z. Artstein, “Stabilization with relaxed controls”, Nonlinear Analysis, 7 (1983), 1163–1173 | DOI | MR | Zbl

[13] E. D. Sontag, “A Lyapunov-like characterization of asymptotic controllability”, SIAM Journal of Control and Optimization, 21 (1983), 462–471 | DOI | MR | Zbl

[14] R. A. Freeman, P. V. Kokotovic, “Inverse optimality in robust stabilization”, SIAM Journal of Control and Optimization, 34 (1966), 1365–1391 | DOI | MR

[15] M. Almobaied, I. Eksin, M. Guzelkaya, “A new inverse optimal control method for discretetime systems”, Proceedings of 12th International Conference on Informatics in Control, Automation and Robotics, 2015, 275–280 | DOI

[16] W. Hahn, A. P. Baartz, Stability of motion, Springer Press, London, 1967, 446 pp. | MR | Zbl

[17] V. Jurdjevic, J. P. Quinn, “Controllability and stability”, Journal of Differential Equations, 28:3 (1978), 381–389 | DOI | MR | Zbl

[18] N. Hudon, M. Guay, “Construction of control Lyapunov functions for damping stabilization of control affine systems”, Proceedings of 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference (Shanghai, China, 2009), 8008–8013

[19] S. C. Beeler, H. T. Tran, H. T. Banks, “Feedback control methodologies for nonlinear systems”, Journal of Optimization Theory and Applications, 107:1 (2000), 1–33 | DOI | MR | Zbl

[20] A. Wernrud, A. Rantzer, “On approximate policy iteration for continuous-time systems”, Proceedings of 44th Conference on Decision and Control and European Control Conference (Seville, December 2005), 213–220 | MR

[21] E. I. Veremey, “Special spectral approach to solutions of SISO LTI H-optimization problems”, Intern. Journal of Automation and Computing, 16:1 (2019), 112–128 | DOI

[22] M. V. Sotnikova, E. I. Veremey, “Dynamic positioning based on nonlinear MPC”, IFAC Proceedings Volumes (IFAC PapersOnline), 9:1 (2013), 31–36

[23] E. I. Veremey, “Separate filtering correction of observer-based marine positioning control laws”, Intern. Journal of Control, 90:8 (2017), 1561–1575 | DOI | MR | Zbl

[24] E. I. Veremey, “Optimization of filtering correctors for autopilot control laws with special structures”, Optimal Control Applications and Methods, 37:2 (2016), 345–348 | DOI | MR