@article{VSPUI_2020_16_3_a4,
author = {V. P. Tregubov and N. K. Egorova},
title = {Model study of the influence of multi-joint muscles on the frequency characteristics of the human body},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {267--276},
year = {2020},
volume = {16},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a4/}
}
TY - JOUR AU - V. P. Tregubov AU - N. K. Egorova TI - Model study of the influence of multi-joint muscles on the frequency characteristics of the human body JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 267 EP - 276 VL - 16 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a4/ LA - ru ID - VSPUI_2020_16_3_a4 ER -
%0 Journal Article %A V. P. Tregubov %A N. K. Egorova %T Model study of the influence of multi-joint muscles on the frequency characteristics of the human body %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 267-276 %V 16 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a4/ %G ru %F VSPUI_2020_16_3_a4
V. P. Tregubov; N. K. Egorova. Model study of the influence of multi-joint muscles on the frequency characteristics of the human body. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 267-276. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a4/
[1] R. Toth, “Multiple degree-of-freedom nonlinear spinal model”, Proceeding of 19th Annual Conference on Engineering in Medicine and Biology (San Francisco, California, 1967), 126–132 | Zbl
[2] Bai Xian-Xu, Xu Shi-Xu, Cheng Wei, Qian Li-Jun, “On 4-degree-of-freedom biodynamic models of seated occupants: Lumped-parameter modeling”, Journal of Sound and Vibration, 402:18 (2017), 122–141 | DOI
[3] G. T. Thompson, “In vivo determination of mechnical properties of the human ulna by mechanical impedance tests: Experimental results and improved mathematical model”, Medical and Biological Engineering, 14 (1976), 253–262 | DOI
[4] D. Orne, “The in vivo driving-point impedance of the human ulna- a viscoelastic beam modal”, Journal of Biomechanics, 7 (1974), 249–257 | DOI
[5] N. N. Kizilova, “Presser wave propagation in liquid field”, Fluid dynamics, 41:3 (2006), 434–446 | DOI | MR | Zbl
[6] A. A. Andronov, S. E. Haikin, Theory of oscillations, ONTI NKTP USSR Publ., M.–L., 1937, 519 pp. (In Russian)
[7] A. A. Andronov, A. A. Witt, S. E. Haikin, Theory of oscillations, Fizmatgiz, M., 1959, 916 pp. (In Russian)
[8] Ya. G. Panovko, I. I. Gubanova, Stability and vibrations of elastic systems, Nauka, M., 1987, 352 pp. (In Russian) | MR
[9] D. Orne, L. Y. King, “A mathematical model of spinal response to impact”, Journal of Biomechanics, 4:1 (1971), 49–71 | DOI
[10] A. M. Zharnov, O. A. Zharnova, “Biomechanical processes in the intervertebral disc of the cervical spine during its movement”, Russian Journal of Biomechanics, 17:1 (2013), 32–40 (In Russian)
[11] V. P. Tregubov, N. K. Egorova, “Model study of the influence of multi-joint muscles on the frequency characteristics of the human body”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 16:2 (2020), 150–164 (In Russian) | DOI | DOI | MR
[12] M. Ciach, J. Awrejcewicz, A. Maciejczak, M. Radek, “Experimental and numerical investigations of C5-C6 cervical spinal segment before and after discectomy using the Cloward operation technique”, Acta of Bioengineering and Biomechanics, 1:1 (1999), 101–105