Thermal processes in natural gas pipeline transport
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 260-266
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A commonly used premise in pipeline hydraulics where the work of friction forces performed at the movement of real gas in the gas pipeline completely turns into thermal energy is verified in the article. By means of the integral definition of Clausius entropy, it is shown that the premise of the conversion of friction forces into thermal energy of gas flow is justified with an acceptable accuracy for engineering applications in relation to the one-dimensional formulation of the task regarding the determination of the longitudinal temperature field of gas.
Mots-clés : gas transportation
Keywords: gas pipeline, one–dimensional model of flow, nonequilibrium thermodynamics, entropy, thermal balance.
@article{VSPUI_2020_16_3_a3,
     author = {V. A. Suleymanov},
     title = {Thermal processes in natural gas pipeline transport},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {260--266},
     year = {2020},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a3/}
}
TY  - JOUR
AU  - V. A. Suleymanov
TI  - Thermal processes in natural gas pipeline transport
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 260
EP  - 266
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a3/
LA  - ru
ID  - VSPUI_2020_16_3_a3
ER  - 
%0 Journal Article
%A V. A. Suleymanov
%T Thermal processes in natural gas pipeline transport
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 260-266
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a3/
%G ru
%F VSPUI_2020_16_3_a3
V. A. Suleymanov. Thermal processes in natural gas pipeline transport. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 260-266. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a3/

[1] A. M. Kanibolotskiy, E. A. Bondarev, O. F. Vasilev, A. F. Voevodin, Non-isothermal gas flow in pipes, Nauka Publ, Novosibirsk, 1978, 126 pp. (In Russian)

[2] V. A. Suleymanov, “Calculation of nonstationary modes of gas pipelines operation”, Energy and Transport, 1987, no. 1, 142–152 (In Russian)

[3] H. Schlichting, Boundary layer theory, McGraw-Hill Publ., New York, 1968, 702 pp. | MR

[4] G. G. Chernyy, Gas dynamics, Nauka, M., 1988, 424 pp. (In Russian)

[5] D. Kondepudi, I. Prigogine, Modern thermodynamics: From heat engines to dissipative structures, John Wiley and Sons Publ., New York, 1998, 552 pp. | Zbl

[6] L. A. Vulis, Thermodynamics of gas flows, Gosenergoizdat, M., 1950, 304 pp. (In Russian)

[7] I. A. Charnyy, Fundamentals of gas dynamics, Gostoptehizdat, M., 1961, 210 pp. (In Russian)

[8] K. I. Strahovich, Hydro and gas dynamics, Nauka, M., 1980, 313 pp. (In Russian)

[9] N. E. Kochin, I. A. Kibel, N. V. Roze, Theoretical hydrodynamics, In 2 ch., v. 2, Fizmatgiz, M., 1963, 728 pp. (In Russian)

[10] I. E. Hodanovich, Analytical bases of design and operation of main gas pipelines, Gostoptehizdat, M., 1961, 128 pp. (In Russian)