Analysis of the phase structure of fluid vibrations with floating longitudinally compressed elastic plate in nonlinear interaction of the surface progressive waves
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 226-237
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the asymptotic expansions obtained by the multi-scale method up to the third order of smallness for the potential velocity of liquid particles and the plate-fluid surface elevation, the dispersion properties of the vibrations generated by the interaction of progressive surface wave harmonics of finite amplitude are analyzed in the article. The effect of nonlinearity of acceleration of vertical displacements of an elastic plate on the dispersion characteristics of wave disturbances is studied. The dependence of the vibration frequency is estimated by taking into account the nonlinearity of the first and second approximations values, the plate thickness, and the longitudinal compressive force. It is shown that the sign of the amplitude of the second interacting harmonic and the nonlinearity of the acceleration of vertical displacements of the longitudinally compressed elastic plate affect the vibration phase. It was found that with a decrease in the wavelength of the initial harmonic, the influence of the plate’s nonlinearity vertical acceleration is enhanced. The presence of compressive force is manifested in a decrease in the frequency of vibrations of the wave disturbance in comparison with the frequency obtained in the absence of longitudinal compression, both with a positive and negative sign of the second interacting harmonic amplitude.
Mots-clés : ice plate fluctuations
Keywords: waves of finite amplitude, nonlinear interaction of waves, flexural deformation of a plate, longitudinal compressive force, phase characteristics.
@article{VSPUI_2020_16_3_a0,
     author = {A. A. Bukatov},
     title = {Analysis of the phase structure of fluid vibrations with floating longitudinally compressed elastic plate in nonlinear interaction of the surface progressive waves},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {226--237},
     year = {2020},
     volume = {16},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a0/}
}
TY  - JOUR
AU  - A. A. Bukatov
TI  - Analysis of the phase structure of fluid vibrations with floating longitudinally compressed elastic plate in nonlinear interaction of the surface progressive waves
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 226
EP  - 237
VL  - 16
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a0/
LA  - ru
ID  - VSPUI_2020_16_3_a0
ER  - 
%0 Journal Article
%A A. A. Bukatov
%T Analysis of the phase structure of fluid vibrations with floating longitudinally compressed elastic plate in nonlinear interaction of the surface progressive waves
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 226-237
%V 16
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a0/
%G ru
%F VSPUI_2020_16_3_a0
A. A. Bukatov. Analysis of the phase structure of fluid vibrations with floating longitudinally compressed elastic plate in nonlinear interaction of the surface progressive waves. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 3, pp. 226-237. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_3_a0/

[1] D. E. Kheisin, “Nonstationary problem of infinite plate fluctuations floating on the ideal fluid surface”, News of AN USSR. Mechanics and Machine-building, 1962, no. 1, 163–167 (In Russian)

[2] A. E. Bukatov, L. V. Cherkesov, “Transient vibrations of an elastic plate floating on a liquid surface”, Intern. Appl. Mechanics, 6:8 (1970), 878–883 | DOI

[3] V. A. Tkachenko, V. V. Yakovlev, “Unsteady bending-gravitational waves in fluid-plate system”, Intern. Appl. Mechanics, 20:3 (1984), 266–271 | DOI | Zbl

[4] D. G. Daffy, “The response of floating ice to a moving, vibrating load”, Cold Regions Science and Technology, 20 (1991), 51–64 | DOI

[5] V. A. Squire, R. J. Hosking, A. D. Kerr, P. J. Langhorne, Moving loads on ice plates, Kluwer Acad. Publ., Dordrecht, 1996, 236 pp. | DOI

[6] I. V. Sturova, “Wave generation by an oscillating submerged cylinder in the presence of a floating semi-infinite elastic plate”, Fluid Mech., 49:4 (2014), 504–514 | DOI | MR | Zbl

[7] E. A. Batyaev, T. I. Khabakhpasheva, “Hydroelastic waves in a channel covered with a free ice sheet”, Fluid Mech., 50:6 (2015), 775–788 | DOI | MR | Zbl

[8] A. E. Bukatov, “Effect of longitudinal compression on transient vibrations of an elastic plate floating on the surface of a liquid”, Intern. Appl. Mechanics, 17:1 (1981), 75–79 | DOI | Zbl

[9] V. I. Pozhuev, N. P. Polyakova, “Nonstationary problem about effect of a moving load on an ice cover”, Structural mechanics and calculation of structures, 1990, no. 6, 46–50 (In Russian)

[10] A. E. Bukatov, V. V. Zharkov, “Formation of the ice cover's flexural oscillations by action of surface and internal ship waves. Pt 1. Surface waves”, Intern. J. Offshore and Polar Engineering, 7:1 (1997), 1–12

[11] A. D. Kerr, “The critical velocities of a moving on a floating ice plate that is subjected to in-plane forces”, Cold Regions Science and Technology, 6 (1983), 267–276 | DOI

[12] R. M. S. M. Schulkes, R. J. Hosking, A. D. Sneyd, “Waves due to a steadily moving source on a floating ice plate. Pt 2”, J. Fluid Mech., 180 (1987), 297–318 | DOI | Zbl

[13] A. E. Bukatov, A. A. Bukatov, “Propagation of surface wave of finite amplitude in a basin with floating broken ice”, Intern. J. Offshore and Polar Engineering, 9:3 (1999), 161–166

[14] O. M. Gladunand, V. S. Fedosenko, “Nonlinear steady-state oscillations of an elastic plate floating on the surface of a liquid of finite depth”, Fluid Mech., 24:3 (1989), 448–455 | DOI

[15] R. V. Gol'dshtein, A. V. Marchenko, “Long waves in the ice-fluid system subject to ice pressure”, Electrical and Mechanical Properties of Ice, Collection of scientistic work of AANII, Gidrometeoizdat Publ., L., 1989, 188–205 (In Russian)

[16] A. T. Il'ichev, “Soliton-like structures on a water-ice interface”, Russian Mathematical Surveys, 70:6 (2015), 1051–1103 | DOI | MR | Zbl

[17] A. E. Bukatov, A. A. Bukatov, “Finite-amplitude waves in a homogeneous fluid with a floating elastic plate”, J. Appl. Mech. Tech. Phys., 50:5 (2009), 785–791 | DOI | Zbl

[18] A. E. Bukatov, A. A. Bukatov, “Nonlinear oscillations of a floating elastic plate”, Intern. Appl. Mechanics, 46:10 (2011), 1139–1146 | DOI | MR | Zbl

[19] A. E. Bukatov, A. A. Bukatov, “Interaction of surface waves in a basin with floating broken ice”, Physical Oceanography, 2003, no. 6, 313–332 | DOI

[20] A. E. Bukatov, A. A. Bukatov, “Phase structure of fluid fluctuations with a floating elastic ice plate under nonlinear interaction of progressive surface waves”, Physical Oceanography, 25:1 (2018), 3–17 | DOI | MR

[21] A. A. Bukatov, “Nonlinear vibrations of a floating longitudinally compressed elastic plate in the interaction of wave harmonics of finite amplitude”, Fluid Dynamics, 54:2 (2019), 194–204 | DOI | Zbl

[22] A. H. Nayfeh, Perturbation methods, Wiley-Interscience Publ., New York, 1973 | MR | MR | Zbl

[23] D. Y. Kheisin, Dynamics of floating ice covers, Gidrometeoizdat Publ., L., 1967, 215 pp. (In Russian)