@article{VSPUI_2020_16_2_a9,
author = {A. M. Kamachkin and D. K. Potapov and V. V. Yevstafyeva},
title = {Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {186--199},
year = {2020},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a9/}
}
TY - JOUR AU - A. M. Kamachkin AU - D. K. Potapov AU - V. V. Yevstafyeva TI - Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 186 EP - 199 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a9/ LA - ru ID - VSPUI_2020_16_2_a9 ER -
%0 Journal Article %A A. M. Kamachkin %A D. K. Potapov %A V. V. Yevstafyeva %T Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 186-199 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a9/ %G ru %F VSPUI_2020_16_2_a9
A. M. Kamachkin; D. K. Potapov; V. V. Yevstafyeva. Dynamics and synchronization in feedback cyclic structures with hysteresis oscillators. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 186-199. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a9/
[1] K. J. Astrom, “Oscillations in systems with relay feedback”, Adaptive Control, Filtering and Signal Processing, Springer-Verlag, New York, 1995, 1–25 | MR | Zbl
[2] C. C. Yu, Autotuning of PID controllers: relay feedback approach, Springer-Verlag, New York, 1999, 235 pp. | Zbl
[3] X. Zou, R. A. Siegel, “Modeling of oscillatory dynamics of a simple enzyme-diffusion system with hysteresis. The case of lumped permeabilities”, J. Chem. Phys., 110:4 (1999), 2267–2279 | DOI
[4] R. B. Northrop, Endogenous and exogenous regulation and control of physiological systems, Chapman Hall, London, 2000, 452 pp.
[5] B. Li, R. A. Siegel, “Global analysis of a model pulsing drug delivery oscillator based on chemomechanical feedback with hysteresis”, Chaos, 10:3 (2000), 682–690 | DOI | MR | Zbl
[6] J. Grasman, Asymptotic methods for relaxation oscillations and applications, Springer Verlag, New York, 1987, 221 pp. | MR | Zbl
[7] E. A. Jackson, Perspectives of nonlinear dynamics, v. In 2 vol., Cambridge University Press, New York, 1991, 469 pp. ; v. 2, 633 pp. | MR | Zbl
[8] S. K. Scott, Oscillations, waves and chaos in chemical kinetics, Oxford University Press, New York, 1994, 90 pp. | MR
[9] I. R. Epstein, K. Showalter, “Nonlinear chemical dynamics: Oscillations, patterns, and chaos”, J. Phys. Chem., 100:31 (1996), 13132–13147 | DOI
[10] J. W. Macki, P. Nistri, P. Zecca, “Mathematical models for hysteresis”, SIAM Review, 35:1 (1993), 94–123 | DOI | MR | Zbl
[11] S. Varigonda, T. T. Georgiou, “Dynamics of relay relaxation oscillators”, IEEE Trans. Automat. Control, 46:1 (2001), 65–77 | DOI | MR | Zbl
[12] V. I. Zubov, Dynamics of control systems, Saint Petersburg University Press, St. Petersburg, 2004, 380 pp. (In Russian)
[13] A. Yu. Aleksandrov, S. V. Sokolov, “Stability and estimations of solutions for some classes of nonlinear systems”, Proc. Middle Volga Math. Soc., 7:1 (2005), 113–123 (In Russian) | Zbl
[14] M. A. Barron, M. Sen, “Synchronization of four coupled van der Pol oscillators”, Nonlin. Dyn., 56:4 (2009), 357–367 | DOI | MR | Zbl
[15] V. V. Evstaf'eva, “On necessary conditions for existence of periodic solutions in a dynamic system with discontinuous nonlinearity and an external periodic influence”, Ufa Math. Journal, 3:2 (2011), 20–27 (In Russian)
[16] A. S. Kuznetsova, “The dynamics of coupled oscillators with a feedback”, Middle Volga Math. Soc. Journal, 13:2 (2011), 63–69 (In Russian) | MR | Zbl
[17] Z. Balanov, W. Krawcewicz, D. Rachinskii, A. Zhezherun, “Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis”, J. Dyn. Differ. Equations, 24:4 (2012), 713–759 | DOI | MR | Zbl
[18] V. V. Yevstafyeva, “Existence of the unique kT-periodic solution for one class of nonlinear systems”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 136–142
[19] V. V. Evstaf'eva, “On existence conditions for a twopoint oscillating periodic solution in an non-autonomous relay system with a Hurwitz matrix”, Automat. Remote Control, 2015, no. 6, 42–56 (In Russian)
[20] A. M. Kamachkin, G. M. Chitrov, V. N. Shamberov, “Normal matrix forms to decomposition and control problems for manydimensional systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 417–430 (In Russian) | MR
[21] E. Hooton, Z. Balanov, W. Krawcewicz, D. Rachinskii, “Noninvasive stabilization of periodic orbits in O$_4$-symmetrically coupled systems near a Hopf bifurcation point”, Intern. Journal Bifurcation and Chaos, 27:6 (2017), 1750087, 1–18 | DOI | MR
[22] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic solutions to automatic control system with relay nonlinearity and sinusoidal external influence”, Intern. Journal Robust Nonlinear Control, 27:2 (2017), 204–211 | DOI | MR | Zbl
[23] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of subharmonic solutions to a hysteresis system with sinusoidal external influence”, Electron. Journal Differential Equations, 2017, no. 140, 1–10 | MR
[24] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “On uniqueness and properties of periodic solution of second-order nonautonomous system with discontinuous nonlinearity”, J. Dyn. Control Syst., 23:4 (2017), 825–837 | DOI | MR | Zbl
[25] V. V. Evstaf'eva, “Periodic solutions of a system of differential equations with hysteresis nonlinearity in the presence of eigenvalue zero”, Ukrainian Math. Journal, 70:8 (2018), 1085–1096 (In Russian) | MR
[26] A. M. Kamachkin, D. K. Potapov, V. V. Yevstafyeva, “Existence of periodic modes in automatic control system with a three-position relay”, Intern. Journal Control, 93:4 (2020), 763–770 | DOI | MR | Zbl
[27] U. A. Rozikov, An introduction to mathematical billiards, World Scientific Publishing Co. Pte. Ltd., Singapore, 2019, 224 pp. | MR | Zbl