@article{VSPUI_2020_16_2_a7,
author = {G. M. Shuvalov and A. B. Vakaeva and D. A. Shamsutdinov and S. A. Kostyrko},
title = {The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {165--176},
year = {2020},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/}
}
TY - JOUR AU - G. M. Shuvalov AU - A. B. Vakaeva AU - D. A. Shamsutdinov AU - S. A. Kostyrko TI - The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 165 EP - 176 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/ LA - en ID - VSPUI_2020_16_2_a7 ER -
%0 Journal Article %A G. M. Shuvalov %A A. B. Vakaeva %A D. A. Shamsutdinov %A S. A. Kostyrko %T The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 165-176 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/ %G en %F VSPUI_2020_16_2_a7
G. M. Shuvalov; A. B. Vakaeva; D. A. Shamsutdinov; S. A. Kostyrko. The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/
[1] H. L. Duan, J. Weissmüller, Y. Wang, “Instabilities of core-shell heterostructured cylinders due to diffusion and epitaxy: spheroidization and blossom of nanowires”, Journal of the Mechanics and Physics of Solids, 56 (2008), 1831–1851 | DOI | MR | Zbl
[2] Z. Erdélyi, D. L. Beke, G. Langer, “Interface kinetics and morphology on the nanoscale”, Vacuum, 84 (2010), 26–31 | DOI
[3] V. A. Romanova, R. R. Balokhonov, “Numerical analysis of mesoscale surface roughening in a coated plate”, Computational Materials Science, 61 (2012), 71–75 | DOI
[4] Y. Huang, H. Chen, J. Wu, X. Feng, “Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons”, Soft Matter, 10 (2014), 2559–2566 | DOI
[5] H. K. Kim, S. H. Lee, Z. Yao, C. Wang, N. Y. Kim, “Suppression of interface roughness between BaTiO$_3$ film and substrate by Si$_3$N$_4$ buffer layer regarding aerosol deposition process”, Journal of Alloys and Compounds, 653 (2015), 69–76 | DOI
[6] E. A. Bashkankova, A. B. Vakaeva, M. A. Grekov, “Perturbation method in the problem on a nearly circular hole in an elastic plane”, Mechanics of Solids, 50 (2015), 198–207 | DOI
[7] H. Gao, “A boundary perturbation analysis for elastic inclusions and interfaces”, International Journal of Solids and Structures, 28 (1991), 703–725 | DOI | Zbl
[8] H. Gao, “Stress concentration at slightly undulating surfaces”, Journal of the Mechanics and Physics of Solids, 39 (1991), 443–458 | DOI | Zbl
[9] M. A. Grekov, “The perturbation approach for a two-component composite with a slightly curved interface”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2004, no. 1, 81–88 (In Russian)
[10] M. A. Grekov, S. A. Kostyrko, “A film coating on a rough surface of an elastic body”, Journal of Applied Mathematics and Mechanics, 77:1 (2013), 79–90 | DOI | MR | Zbl
[11] M. A. Grekov, S. A. Kostyrko, “A multilayer film coating with slightly curved boundary”, International Journal of Engineering Science, 89 (2015), 61–74 | DOI | MR | Zbl
[12] S. Kainuma, Y. S. Jeong, J. H. Ahn, “Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test”, Materials Science and Engineering, A, 602 (2014), 89–97 | DOI
[13] H. Medina, “A stress-concentration-formula generating equation for arbitrary shallow surfaces”, International Journal of Solids and Structures, 2015, 86–93 | DOI
[14] Y. I. Vikulina, M. A. Grekov, S. A. Kostyrko, “Model of film coating with weakly curved surface”, Mechanics of Solids, 45 (2010), 778–788 | DOI
[15] R. C. Cammarata, K. Sieradzki, “Effects of surface stress on the elastic moduli of thin films and superlattices”, Physical Review Letters, 62 (1989), 2005–2008 | DOI
[16] A. Fartash, E. E. Fullerton, I. K. Schuller, “Evidence for the supermodulus effect and enhanced hardness in metallic superlattices”, Physical Review, B, Condensed Matter, 44 (1991), 13760–13763 | DOI
[17] C. T. Sun, H. T. Zhang, “Size-dependent elastic moduli of platelike nanomaterials”, Journal of Applied Physics, 93 (2003), 1212–1218 | DOI
[18] M. E. Gurtin, A. I. Murdoch, “A continuum theory of elastic material surfaces”, Archive for Rational Mechanics and Analysis, 57 (1975), 291–323 | DOI | MR | Zbl
[19] M. E. Gurtin, A. I. Murdoch, “Surface stress in solids”, International Journal of Solids and Structures, 14 (1978), 431–440 | DOI | Zbl
[20] R. V. Goldstein, V. A. Gorodtsov, K. V. Ustinov, “Effect of residual stress and surface elasticity on deformation of nanometer spherical inclusions in an elastic matrix”, Physical Mesomechanics, 13 (2010), 318–328 | DOI
[21] H. Altenbach, V. A. Eremeyev, N. F. Morozov, “Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale”, International Journal of Engineering Science, 53 (2012), 83–89 | DOI | MR
[22] V. A. Eremeyev, “On effective properties of materials at the nano- and microscales considering surface effect”, Acta Mechanica, 227:1 (2016), 29–42 | DOI | MR | Zbl
[23] M. Dai, M. Li, P. Schiavone, “Plane deformations of an inhomogeneity matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model”, Journal of Applied Mechanics, 85 (2018), 121010 | DOI
[24] M. Dai, Y. J. Wang, P. Schiavone, “Integral-type stress boundary condition in the complete Gurtin-Murdoch surface model with accompanying complex variable representation”, Journal of Elasticity, 134 (2019), 235–241 | DOI | MR | Zbl
[25] G. Iovane, A. V. Nasedkin, “Numerical modelling of two-phase piezocomposites with interface mechanical anisotropic effects”, Advanced Structured Materials, 103 (2019), 293–304 | DOI | MR | Zbl
[26] K. Song, H. P. Song, P. Schiavone, C. F. Gao, “The effects of surface elasticity on the thermal stress around a circular nano-hole in a thermoelectric material”, Mathematics and Mechanics of Solids, 24:10 (2019), 3156–3166 | DOI | MR | Zbl
[27] L. Nazarenko, S. Bargmann, H. Stolarski, “Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin-Murdoch model of material surfaces”, Continuum Mechanics and Thermodynamics, 29 (2017), 77–96 | DOI | MR | Zbl
[28] L. Nazarenko, H. Stolarski, H. Altenbach, “Effective properties of short-fiber composites with Gurtin-Murdoch model of interphase”, International Journal of Solids and Structures, 97 (2016), 75–88 | DOI
[29] H. Altenbach, V. A. Eremeyev, L. P. Lebedev, “On the existence of solution in the linear elasticity with surface stresses”, ZAMM Journal of Applied Mathematics and Mechanics: Zeitschrift fur angewandte Mathematik und Mechanik, 90 (2010), 231–240 | DOI | MR | Zbl
[30] D. J. Steigmann, R. W. Ogden, “Plane deformations of elastic solids with intrinsic boundary elasticity”, Proceedings of the Royal Society A, 453 (1997), 853–877 | DOI | MR | Zbl
[31] D. J. Steigmann, R. W. Ogden, “Elastic surface-substrate interactions”, Proceedings of the Royal Society A, 455 (1997), 437–474 | DOI | MR
[32] A. Y. Zemlyanova, S. G. Mogilevskaya, “Circular inhomogeneity with Steigmann-Ogden interface: local fields, neutrality, and Maxwell's type approximation formula”, International Journal of Solids and Structures, 135 (2018), 85–98 | DOI
[33] A. Y. Zemlyanova, S. G. Mogilevskaya, “On spherical inhomogeneity with Steigmann-Ogden interface”, Journal of Applied Mechanics, 85 (2018), 121009 | DOI
[34] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mechanics of Materials, 33 (2001), 309–323 | DOI
[35] S. Lurie, P. Belov, “Gradient effects in fracture mechanics for nano-structured materials”, Engineering Fracture Mechanics, 130 (2014), 3–11 | DOI
[36] P. Mohammadi, L. P. Liu, P. Sharma, R. V. Kukta, “Surface energy, elasticity and the homogenization of rough surfaces”, Journal of the Mechanics and Physics of Solids, 61 (2013), 325–340 | DOI | MR | Zbl
[37] Y. Wang, J. Weissmüller, H. L. Duan, “Mechanics of corrugated surfaces”, Journal of the Mechanics and Physics of Solids, 58 (2010), 1552–1566 | DOI | MR | Zbl
[38] J. Weissmüller, H. L. Duan, “Cantilever bending with rough surfaces”, Physical Review Letters, 101 (2008), 146102 | DOI
[39] M. A. Grekov, S. A. Kostyrko, “Surface effects in an elastic solid with nanosized surface asperities”, International Journal of Solids and Structures, 96 (2016), 153–161 | DOI
[40] S. A. Kostyrko, M. A. Grekov, “Elastic field at a rugous interface of a bimaterial with surface effects”, Engineering Fracture Mechanics, 216 (2019), 106507 | DOI
[41] S. A. Kostyrko, M. A. Grekov, H. Altenbach, “Stress concentration analysis of nanosized thin-film coating with rough interface”, Continuum Mechanics and Thermodynamics, 31 (2019), 1863–1871 | DOI | MR
[42] A. B. Vakaeva, G. M. Shuvalov, S. A. Kostyrko, “Interfacial stresses in bimaterial composites with nanosized interface relief”, Proceedings of the 8th International Conference on Coupled Problems in Science and Engineering. Coupled Problems, 2019, 679–688
[43] Y. I. Vikulina, M. A. Grekov, “The stress state of planar surface of a nanometer-sized elastic body under periodic loading”, Vestnik of Saint Petersburg University. Mathematics, 45 (2012), 174–180 | DOI | MR | Zbl
[44] L. Tian, R. K. N. D. Rajapakse, “Finite element modeling of nanoscale inhomogeneities in an elastic matrix”, Computational Materials Science, 41 (2007), 44–53 | DOI
[45] R. E. Miller, V. B. Shenoy, “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 11 (2000), 139–147 | DOI