The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 165-176
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the Gurtin—Murdoch surface/interface elasticity theory, the article investigates the effect of nonlinear terms in the boundary perturbation method on stress concentration near the curvilinear bimaterial interface taking into account plane strain conditions. The authors consider the 2D boundary value problem for the infinite two-component plane under uniaxial tension. The interface domain is assumed to be a negligibly thin layer with the elastic properties differing from those of the bulk materials. Using the boundary perturbation method, the authors determined a semi-analytical solution taking into account non-linear approximations. In order to verify this solution, the corresponding boundary value problem was solved using the finite element method where the interface layer is modelled by the truss elements. It was shown that the effect of the amplitude-to-wavelength ratio of surface undulation on the stress concentration is nonlinear. This should be taken into account even for small perturbations. It was also found that the convergence rate of the derived solution increases with an increase in the relative stiffness coefficient of the bimaterial system and, conversely, decreases with an increase of the amplitude-to-wavelength ratio.
Keywords: bimaterial composites, nanomaterials, interface stress, 2D problem, boundary perturbation method, finite element method, size-effect, interface nano-asperities.
@article{VSPUI_2020_16_2_a7,
     author = {G. M. Shuvalov and A. B. Vakaeva and D. A. Shamsutdinov and S. A. Kostyrko},
     title = {The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {165--176},
     year = {2020},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/}
}
TY  - JOUR
AU  - G. M. Shuvalov
AU  - A. B. Vakaeva
AU  - D. A. Shamsutdinov
AU  - S. A. Kostyrko
TI  - The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 165
EP  - 176
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/
LA  - en
ID  - VSPUI_2020_16_2_a7
ER  - 
%0 Journal Article
%A G. M. Shuvalov
%A A. B. Vakaeva
%A D. A. Shamsutdinov
%A S. A. Kostyrko
%T The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 165-176
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/
%G en
%F VSPUI_2020_16_2_a7
G. M. Shuvalov; A. B. Vakaeva; D. A. Shamsutdinov; S. A. Kostyrko. The effect of nonlinear terms in boundary perturbation method on stress concentration near the nanopatterned bimaterial interface. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a7/

[1] H. L. Duan, J. Weissmüller, Y. Wang, “Instabilities of core-shell heterostructured cylinders due to diffusion and epitaxy: spheroidization and blossom of nanowires”, Journal of the Mechanics and Physics of Solids, 56 (2008), 1831–1851 | DOI | MR | Zbl

[2] Z. Erdélyi, D. L. Beke, G. Langer, “Interface kinetics and morphology on the nanoscale”, Vacuum, 84 (2010), 26–31 | DOI

[3] V. A. Romanova, R. R. Balokhonov, “Numerical analysis of mesoscale surface roughening in a coated plate”, Computational Materials Science, 61 (2012), 71–75 | DOI

[4] Y. Huang, H. Chen, J. Wu, X. Feng, “Controllable wrinkle configurations by soft micro-patterns to enhance the stretchability of Si ribbons”, Soft Matter, 10 (2014), 2559–2566 | DOI

[5] H. K. Kim, S. H. Lee, Z. Yao, C. Wang, N. Y. Kim, “Suppression of interface roughness between BaTiO$_3$ film and substrate by Si$_3$N$_4$ buffer layer regarding aerosol deposition process”, Journal of Alloys and Compounds, 653 (2015), 69–76 | DOI

[6] E. A. Bashkankova, A. B. Vakaeva, M. A. Grekov, “Perturbation method in the problem on a nearly circular hole in an elastic plane”, Mechanics of Solids, 50 (2015), 198–207 | DOI

[7] H. Gao, “A boundary perturbation analysis for elastic inclusions and interfaces”, International Journal of Solids and Structures, 28 (1991), 703–725 | DOI | Zbl

[8] H. Gao, “Stress concentration at slightly undulating surfaces”, Journal of the Mechanics and Physics of Solids, 39 (1991), 443–458 | DOI | Zbl

[9] M. A. Grekov, “The perturbation approach for a two-component composite with a slightly curved interface”, Vestnik of Saint Petersburg University. Series 1. Mathematics. Mechanics. Astronomy, 2004, no. 1, 81–88 (In Russian)

[10] M. A. Grekov, S. A. Kostyrko, “A film coating on a rough surface of an elastic body”, Journal of Applied Mathematics and Mechanics, 77:1 (2013), 79–90 | DOI | MR | Zbl

[11] M. A. Grekov, S. A. Kostyrko, “A multilayer film coating with slightly curved boundary”, International Journal of Engineering Science, 89 (2015), 61–74 | DOI | MR | Zbl

[12] S. Kainuma, Y. S. Jeong, J. H. Ahn, “Investigation on the stress concentration effect at the corroded surface achieved by atmospheric exposure test”, Materials Science and Engineering, A, 602 (2014), 89–97 | DOI

[13] H. Medina, “A stress-concentration-formula generating equation for arbitrary shallow surfaces”, International Journal of Solids and Structures, 2015, 86–93 | DOI

[14] Y. I. Vikulina, M. A. Grekov, S. A. Kostyrko, “Model of film coating with weakly curved surface”, Mechanics of Solids, 45 (2010), 778–788 | DOI

[15] R. C. Cammarata, K. Sieradzki, “Effects of surface stress on the elastic moduli of thin films and superlattices”, Physical Review Letters, 62 (1989), 2005–2008 | DOI

[16] A. Fartash, E. E. Fullerton, I. K. Schuller, “Evidence for the supermodulus effect and enhanced hardness in metallic superlattices”, Physical Review, B, Condensed Matter, 44 (1991), 13760–13763 | DOI

[17] C. T. Sun, H. T. Zhang, “Size-dependent elastic moduli of platelike nanomaterials”, Journal of Applied Physics, 93 (2003), 1212–1218 | DOI

[18] M. E. Gurtin, A. I. Murdoch, “A continuum theory of elastic material surfaces”, Archive for Rational Mechanics and Analysis, 57 (1975), 291–323 | DOI | MR | Zbl

[19] M. E. Gurtin, A. I. Murdoch, “Surface stress in solids”, International Journal of Solids and Structures, 14 (1978), 431–440 | DOI | Zbl

[20] R. V. Goldstein, V. A. Gorodtsov, K. V. Ustinov, “Effect of residual stress and surface elasticity on deformation of nanometer spherical inclusions in an elastic matrix”, Physical Mesomechanics, 13 (2010), 318–328 | DOI

[21] H. Altenbach, V. A. Eremeyev, N. F. Morozov, “Surface viscoelasticity and effective properties of thin-walled structures at the nanoscale”, International Journal of Engineering Science, 53 (2012), 83–89 | DOI | MR

[22] V. A. Eremeyev, “On effective properties of materials at the nano- and microscales considering surface effect”, Acta Mechanica, 227:1 (2016), 29–42 | DOI | MR | Zbl

[23] M. Dai, M. Li, P. Schiavone, “Plane deformations of an inhomogeneity matrix system incorporating a compressible liquid inhomogeneity and complete Gurtin-Murdoch interface model”, Journal of Applied Mechanics, 85 (2018), 121010 | DOI

[24] M. Dai, Y. J. Wang, P. Schiavone, “Integral-type stress boundary condition in the complete Gurtin-Murdoch surface model with accompanying complex variable representation”, Journal of Elasticity, 134 (2019), 235–241 | DOI | MR | Zbl

[25] G. Iovane, A. V. Nasedkin, “Numerical modelling of two-phase piezocomposites with interface mechanical anisotropic effects”, Advanced Structured Materials, 103 (2019), 293–304 | DOI | MR | Zbl

[26] K. Song, H. P. Song, P. Schiavone, C. F. Gao, “The effects of surface elasticity on the thermal stress around a circular nano-hole in a thermoelectric material”, Mathematics and Mechanics of Solids, 24:10 (2019), 3156–3166 | DOI | MR | Zbl

[27] L. Nazarenko, S. Bargmann, H. Stolarski, “Closed-form formulas for the effective properties of random particulate nanocomposites with complete Gurtin-Murdoch model of material surfaces”, Continuum Mechanics and Thermodynamics, 29 (2017), 77–96 | DOI | MR | Zbl

[28] L. Nazarenko, H. Stolarski, H. Altenbach, “Effective properties of short-fiber composites with Gurtin-Murdoch model of interphase”, International Journal of Solids and Structures, 97 (2016), 75–88 | DOI

[29] H. Altenbach, V. A. Eremeyev, L. P. Lebedev, “On the existence of solution in the linear elasticity with surface stresses”, ZAMM Journal of Applied Mathematics and Mechanics: Zeitschrift fur angewandte Mathematik und Mechanik, 90 (2010), 231–240 | DOI | MR | Zbl

[30] D. J. Steigmann, R. W. Ogden, “Plane deformations of elastic solids with intrinsic boundary elasticity”, Proceedings of the Royal Society A, 453 (1997), 853–877 | DOI | MR | Zbl

[31] D. J. Steigmann, R. W. Ogden, “Elastic surface-substrate interactions”, Proceedings of the Royal Society A, 455 (1997), 437–474 | DOI | MR

[32] A. Y. Zemlyanova, S. G. Mogilevskaya, “Circular inhomogeneity with Steigmann-Ogden interface: local fields, neutrality, and Maxwell's type approximation formula”, International Journal of Solids and Structures, 135 (2018), 85–98 | DOI

[33] A. Y. Zemlyanova, S. G. Mogilevskaya, “On spherical inhomogeneity with Steigmann-Ogden interface”, Journal of Applied Mechanics, 85 (2018), 121009 | DOI

[34] Y. Benveniste, T. Miloh, “Imperfect soft and stiff interfaces in two-dimensional elasticity”, Mechanics of Materials, 33 (2001), 309–323 | DOI

[35] S. Lurie, P. Belov, “Gradient effects in fracture mechanics for nano-structured materials”, Engineering Fracture Mechanics, 130 (2014), 3–11 | DOI

[36] P. Mohammadi, L. P. Liu, P. Sharma, R. V. Kukta, “Surface energy, elasticity and the homogenization of rough surfaces”, Journal of the Mechanics and Physics of Solids, 61 (2013), 325–340 | DOI | MR | Zbl

[37] Y. Wang, J. Weissmüller, H. L. Duan, “Mechanics of corrugated surfaces”, Journal of the Mechanics and Physics of Solids, 58 (2010), 1552–1566 | DOI | MR | Zbl

[38] J. Weissmüller, H. L. Duan, “Cantilever bending with rough surfaces”, Physical Review Letters, 101 (2008), 146102 | DOI

[39] M. A. Grekov, S. A. Kostyrko, “Surface effects in an elastic solid with nanosized surface asperities”, International Journal of Solids and Structures, 96 (2016), 153–161 | DOI

[40] S. A. Kostyrko, M. A. Grekov, “Elastic field at a rugous interface of a bimaterial with surface effects”, Engineering Fracture Mechanics, 216 (2019), 106507 | DOI

[41] S. A. Kostyrko, M. A. Grekov, H. Altenbach, “Stress concentration analysis of nanosized thin-film coating with rough interface”, Continuum Mechanics and Thermodynamics, 31 (2019), 1863–1871 | DOI | MR

[42] A. B. Vakaeva, G. M. Shuvalov, S. A. Kostyrko, “Interfacial stresses in bimaterial composites with nanosized interface relief”, Proceedings of the 8th International Conference on Coupled Problems in Science and Engineering. Coupled Problems, 2019, 679–688

[43] Y. I. Vikulina, M. A. Grekov, “The stress state of planar surface of a nanometer-sized elastic body under periodic loading”, Vestnik of Saint Petersburg University. Mathematics, 45 (2012), 174–180 | DOI | MR | Zbl

[44] L. Tian, R. K. N. D. Rajapakse, “Finite element modeling of nanoscale inhomogeneities in an elastic matrix”, Computational Materials Science, 41 (2007), 44–53 | DOI

[45] R. E. Miller, V. B. Shenoy, “Size-dependent elastic properties of nanosized structural elements”, Nanotechnology, 11 (2000), 139–147 | DOI