@article{VSPUI_2020_16_2_a4,
author = {A. P. Zhabko and K. B. Nurtazina and V. V. Provotorov},
title = {Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {129--143},
year = {2020},
volume = {16},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a4/}
}
TY - JOUR AU - A. P. Zhabko AU - K. B. Nurtazina AU - V. V. Provotorov TI - Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 129 EP - 143 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a4/ LA - en ID - VSPUI_2020_16_2_a4 ER -
%0 Journal Article %A A. P. Zhabko %A K. B. Nurtazina %A V. V. Provotorov %T Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 129-143 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a4/ %G en %F VSPUI_2020_16_2_a4
A. P. Zhabko; K. B. Nurtazina; V. V. Provotorov. Uniqueness solution to the inverse spectral problem with distributed parameters on the graph-star. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 129-143. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a4/
[1] V. V. Provotorov, S. L. Podvalny, “Determining the starting function in the task of observing the parabolic system with distributed parameters on the graph”, Vestnik of Voronezh State Technical University, 10:6 (2014), 29–35 (In Russian)
[2] A. P. Zhabko, K. B. Nurtazina, V. V. Provotorov, “About one approach to solving the inverse problem for parabolic equation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:3 (2019), 322–335 | DOI | MR
[3] S. Avdonin, G. Murzabekova, K. Nurtazina, “Source identification for the differential equation with memory”, Trends in Mathematics. Research Perspective, Birkhäeuser Springer International Publishing, Switzerland, 2017, 111–120 | DOI | MR | Zbl
[4] S. Avdonin, J. Bell, K. Nurtazina, “Determining distributed parameters in a neuronal cable model on a tree graph”, Mathematic Methods in the Applied Sciences, 40:11 (2017), 3973–3991 | DOI | MR
[5] S. L. Podvalny, V. V. Provotorov, E. S. Podvalny, “The controllability of parabolic systems with delay and distributed parameters on the graph”, 12th International Symposium Intelligent Systems, INTELS 2016, Procedia Computer Sciense, 2017, 324–330 | DOI
[6] V. V. Karelin, “Penalty functions in the control problem of an observation process”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 109–114 (In Russian)
[7] S. Avdonin, P. Kurasov, “Inverse problems for quantum trees”, Inverse Problems Imag., 2:1 (2008), 3973–3991 | MR
[8] V. A. Yurko, Introduction to the theory of inverse spectral problems, Fizmatlit, M., 2007, 384 pp. (In Russian)
[9] V. V. Provotorov, “Eigenfunctions of the Sturm-Liouville problem on astar graph”, Mathematics, 199:10 (2008), 1523–1545 | MR | Zbl
[10] V. V. Provotorov, “Modeling of vibrating processes of “mast-stretching””, Systems of Control and Information Technologies, 2008, no. 1.2(31), 272–277 (In Russian)
[11] V. V. Provotorov, “Expansion of eigenfunctions of Sturm-Liouville problem on astar graph”, Russian Mathematics, 3 (2008), 50–62 (In Russian) | MR | Zbl
[12] V. V. Provotorov, “Eigenfunctions of the Sturm-Liouville problem astar graph”, Mathematics, 199:10 (2008), 105–126 (In Russian) | MR | Zbl
[13] V. V. Provotorov, “The method of moments in the problem of extinguishing the oscillations of the differential system on the graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 2, 60–69 (In Russian)
[14] V. V. Provotorov, E. N. Provotorova, “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (In Russian) | DOI | MR
[15] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of nonlinear initial boundary value problem with distributed parameters in the netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI | MR
[16] V. V. Provotorov, “Boundary control of a parabolic system with delay and distributed parameters on the graph”, International Conference “Stability and Control Processes” in memory of V. I. Zubov (SCP) (Saint Petersburg, Russia, 2015), 126–128
[17] V. V. Provotorov, S. M. Sergeev, A. A. Part, “Solvability of hyperbolic systems with distributed parameters on the graph in the weak formulation”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:1 (2019), 107–117 | DOI | MR
[18] V. V. Provotorov, E. N. Provotorova, “Optimal control of the linearized Navier-Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 428–441 | DOI | MR
[19] M. A. Artemov, E. S. Baranovskii, A. P. Zhabko, V. V. Provotorov, “On a 3D model of nonisothermal flows in a pipeline network”, Journal of Physics. Conference Series, 1203 (2019), 012094 | DOI
[20] A. P. Zhabko, V. V. Provotorov, O. R. Balaban, “Stabilization of weak solutions of parabolic systems with distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:2 (2019), 187–198 | DOI | MR
[21] A. P. Zhabko, O. G. Tikhomirov, O. N. Chizhova, “On stabilization of a class of systems with time proportional delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 165–172 | DOI | MR
[22] I. V. Alexandrova, A. P. Zhabko, “A new LKF approach to stability analysis of linear systems with uncertain delays”, Automatica, 91 (2018), 173–178 | DOI | MR | Zbl
[23] A. Aleksandrov, E. Aleksandrova, A. Zhabko, “Asymptotic stability conditions for certain classes of mechanical systems with time delay”, WSEAS Transactions on Systems and Control, 9 (2014), 388–397 | MR
[24] A. Aleksandrov, E. Aleksandrova, A. Zhabko, “Asymptotic stability conditions of solutions for nonlinear multiconnected time-delay systems”, Circuits Systems and Signal Processing, 35:10 (2016), 3531–3554 | DOI | MR | Zbl
[25] A. P. Zhabko, O. G. Tikhomirov, O. N. Chizhova, “On stabilization of a class of systems with time proportional delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 165–172 | DOI | MR
[26] E. I. Veremey, M. V. Sotnikova, “Plasma stabilization by prediction with stable linear approximation”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2011, no. 1, 116–133 (In Russian)
[27] A. M. Kamachkin, V. V. Yevstafyeva, “Oscillations in a relay control system at an external disturbance”, Control Applications of Optimization 2000, Proceedings of the 11th IFAC Workshop, v. 2, 2000, 459–462