Mathematical modeling of two-dimentional periodic system of field emitters
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 121-128
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to a two-dimensional periodic system of field emitters mathematical modeling. Field-emission electron-vacuum devices are actively used in many fields of science and technology. In this article the field cathode as a periodic system of emitters of infinite length and the same shape, located on a flat substrate and at the same distance from each other, is investigated. Anode is a plane parallel to the substrate. To calculate the electrostatic potential distribution the influence of each emitter is replaced by the influence of a charged filament. To solve the boundary value problem for the Poisson equation the variables separation method in Cartesian coordinates is used. The potential distribution was found in an analytical form in the entire area of the system. In accordance with the formulas obtained, numerical calculations were carried out and the effect of emitter packing density on the electrostatic potential distribution is shown.
Keywords: field emitter array, field cathode, boundary-value problem, electrostatic potential, mathematical modeling.
Mots-clés : Poisson equation
@article{VSPUI_2020_16_2_a3,
     author = {E. M. Vinogradova and G. G. Doronin},
     title = {Mathematical modeling of two-dimentional periodic system of field emitters},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {121--128},
     year = {2020},
     volume = {16},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a3/}
}
TY  - JOUR
AU  - E. M. Vinogradova
AU  - G. G. Doronin
TI  - Mathematical modeling of two-dimentional periodic system of field emitters
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 121
EP  - 128
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a3/
LA  - ru
ID  - VSPUI_2020_16_2_a3
ER  - 
%0 Journal Article
%A E. M. Vinogradova
%A G. G. Doronin
%T Mathematical modeling of two-dimentional periodic system of field emitters
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 121-128
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a3/
%G ru
%F VSPUI_2020_16_2_a3
E. M. Vinogradova; G. G. Doronin. Mathematical modeling of two-dimentional periodic system of field emitters. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 121-128. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a3/

[1] F. F. Dall'Agnol, T. A. De Assis, R. G. Forbes, “Physics-based derivation of a formula for the mutual depolarization of two post-like field emitters”, Journal of Physics: Condensed Matter., 30:37 (2018), 375703, 5 pp. | DOI

[2] Y. Liang, “Ge-doped ZnO nanowire arrays as cold field emitters with excellent performance”, Nanotechnology, 30:37 (2019), 375603, 8 pp. | DOI

[3] M. V. Davidovich, R. K. Yafarov, “Pulsed and static field emission VAC of carbon nanocluster structures: experiment and its interpretation”, Tech. Phys., 64:8 (2019), 1210–1220 | DOI

[4] E. O. Popov, A. G. Kolosko, S. V. Filippov, “A test for the applicability of the field emission law to studying multitip field emitters by analysis of the power index of the preexponential voltage factor”, Tech. Phys. Lett., 45:9 (2019), 916–919 | DOI

[5] G. Kaur, K. Saini, A. K. Tripath, V. Jain, D. Deva, I. Lahiri, “Room temperature growth and field emission characteristics of CuO nanostructures”, Vacuum, 139 (2017), 136–142 | DOI

[6] S. W. Lee, J. S. Kang, H. R. Lee, S. Y. Park, J. Jang, K. C. Par, “Enhanced and stable electron emission of carbon nanotube emitters with graphitization”, Vacuum, 121 (2015), 212–216 | DOI

[7] S. Riyajuddin, S. Kumar, K. Soni, S. P. Gaur, D. Badhwar, K. Ghosh, “Study of field emission properties of pure graphene-CNT heterostructures connected via seamless interface”, Nanotechnology, 30:38 (2019), 385702, 10 pp. | DOI

[8] Tripathi P, B. K. Gupta, P. K. Bankar, M. A. More, D. J. Late, O. N. Srivastava, “Graphene nanosheets assisted carbon hollow cylinder for high performance field emission applications”, Materials Research Express, 6:9 (2019), 095066, 10 pp. | DOI

[9] T. A. De Assis, F. F. Dall'Agnol, “Mechanically stable nanostructures with desirable characteristic field enhancement factors: a response from scale invariance in electrostatics”, Nanotechnology, 27:44 (2016), 44LT01, 6 pp. | DOI

[10] N. N. Mirolyubov, Methods of calculating electrostatic fields, Vysshaya Shkola, M., 1963, 209 pp. (In Russian)

[11] G. G. Doronin, E. M. Vinogradova, “Diode field emission system with a dielectric layer modeling”, The L Annual International Conference on Control Processes and Stability, CPS-19, Abstracts, ed. N. V. Smirnov, Publishing House Fedorova G. V., St. Petersburg, 2019, 73–77 (In Russian) | MR

[12] E. M. Vinogradova, N. V. Egorov, G. G. Doronin, “The shart-edged field cathode mathematical modeling”, 14th International Baltic Conference on Atomic Layer Deposition, BALD 2016, 2016, 68–70

[13] A. S. Bugaev, E. M. Vinogradova, N. V. Egorov, E. P. Sheshin, Field-electron cathodes and guns, ID “Intellect” Publ, Dolgoprudny, 2017, 288 pp. (In Russian)

[14] E. M. Vinogradova, N. V. Egorov, D. S. Televnyi, “Calculation of a triode field-emission system with a modulator”, Tech. Phys., 59:2 (2014), 291–296 | DOI

[15] E. M. Vinogradova, E. N. Egorov, D. S. Televnyy, “Mathematical modeling of field emitter array”, Vacuum, 127 (2016), 45–50 | DOI

[16] E. M. Vinogradova, N. V. Egorov, G. G. Doronin, “Mathematical simulation of a 2D diode system with a blade-shaped field emitter”, Tech. Phys., 65:4 (2020), 514–518 | DOI