Estimates for Taylor series method to linear total systems of PDEs
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 112-120
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A large number of differential equations can be reduced to polynomial form. As was shown in a number of works by various authors, one of the best methods for the numerical solution of the initial value problem for such ODE systems is the method of Taylor series. In this article we consider the Cauchy problem for the total linear PDE system, and then — a theorem about the accuracy of its solutions by this method is formulated and proved. In the final part of the article, four examples of total systems of partial differential equations to the well-known two-body problem are proposed: two of them are related to the Kepler equation, one to the motion of a point in the orbit plane, and the last to the motion of the orbit plane.
Keywords: Taylor series method, total linear PDE system, polynomial system, numerical PDE system integration.
@article{VSPUI_2020_16_2_a2,
     author = {L. K. Babadzanjanz and I. Yu. Pototskaya and Yu. Yu. Pupysheva},
     title = {Estimates for {Taylor} series method to linear total systems of {PDEs}},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {112--120},
     year = {2020},
     volume = {16},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a2/}
}
TY  - JOUR
AU  - L. K. Babadzanjanz
AU  - I. Yu. Pototskaya
AU  - Yu. Yu. Pupysheva
TI  - Estimates for Taylor series method to linear total systems of PDEs
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 112
EP  - 120
VL  - 16
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a2/
LA  - en
ID  - VSPUI_2020_16_2_a2
ER  - 
%0 Journal Article
%A L. K. Babadzanjanz
%A I. Yu. Pototskaya
%A Yu. Yu. Pupysheva
%T Estimates for Taylor series method to linear total systems of PDEs
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 112-120
%V 16
%N 2
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a2/
%G en
%F VSPUI_2020_16_2_a2
L. K. Babadzanjanz; I. Yu. Pototskaya; Yu. Yu. Pupysheva. Estimates for Taylor series method to linear total systems of PDEs. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 112-120. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a2/

[1] I. V. Gaishun, Completely solvable multidimensional differential equations, Nauka i Technika Publ., Minsk, Belarus, 1983, 272 pp. (In Russian) | MR

[2] L. K. Babadzanjanz, “The additional variables method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 4, 3–11 (In Russian)

[3] L. K. Babadzanjanz, K. M. Bregman, “Algorithm of the additional variables method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2012, no. 2, 3–12 (In Russian)

[4] A. Abad, R. Barrio, F. Blesa, M. Rodriguez, “Breaking the limits: the Taylor series method”, Appl. Math. and Computation, 217:20 (2011), 7940–7954 | DOI | MR | Zbl

[5] I. M. Alesova, L. K. Babadzanjanz, I. Yu. Pototskaya, Yu. Yu. Pupysheva, A. T. Saakyan, “Highprecision numerical integration of equations in dynamics”, International scientific conference on mechanics. The Eighth Polyakhov's Reading (Saint Petersburg, Saint Petersburg, 2018), AIP Conference Proceedings, 1959, 080005, 1–4 | DOI

[6] L. K. Babadzanjanz, “The Taylor series method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 3, 13–29 (In Russian)

[7] M. Berz, Cosy infinity version 8 reference manual, Technical Report MSUCL-1088, Michigan National Superconducting Cyclotron Lab., Michigan State University Press, Michigan, 2003, 695 pp.

[8] M. Berz, C. Bischof, G. F. Corliss, A. Griewank, Computational differentiation: techniques, applications, and tools, Society for Industrial and Applied Mathematics Publ., Philadelphia, 1997, 424 pp. | MR

[9] L. K. Babadzanjanz, I. Yu. Pototskaya, Yu. Yu. Pupysheva, “Error estimates for numerical integration of ODEs in the minimax formulation”, 2017 Constructive Nonsmooth Analysis and Related Topics (Dedicated to the memory of V. F. Demyanov), CNSA 2017, Proceedings (Saint Petersburg, Russia, 2017), 1–4 | DOI | Zbl

[10] L. K. Babadzanjanz, A. I. Bol-shakov, “Implementation of the Taylor series method for solving ordinary differential equations”, Computational programming methods, 13:4 (2012), 497–510 (In Russian)

[11] L. K. Babadzanjanz, Yu. A. Pupychev, Yu. Yu. Pupycheva, Classical Mechanics, Saint Petersburg State University Press, Saint Petersburg, 2007, 240 pp. (In Russian) (accessed: 14.07.2019) http://www.apmath.spbu.ru/ru/staff/babadzhanyants/publ/publ36.pdf

[12] R. Bellman, Introduction to matrix analysis, 2nd ed., Society for Industrial and Applied Mathematics Publ., Philadelphia, 1997, 403 pp. | MR | Zbl

[13] F. R. Guntmacher, The theory of matrices, In 2 vol., Chelsea, New York, 1960, 374 pp. | MR

[14] J. N. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965, 564 pp. | MR | Zbl

[15] A. M. Ostrowski, Solution of equations and systems of equations, Pure and Applied Mathematics: A Series of Monographs and Textbooks, 9, 2nd ed., Elsevier, Acad. Press, 1966, 352 pp.

[16] K. M. Bregman, Mathematical models to perturbed motion in central fields, PhD thesis, Saint Petersburg State University Press, Saint Petersburg, 2014, 145 pp. (In Russian)

[17] L. K. Babadzanjanz, A. M. Bregman, K. M. Bregman, P. V. Kasikova, L. A. Petrosyan, “Total systems of equations to the two-body problem”, Engineering sciences from theory to applications, 8 (56), SIBAK Publ, Novosibirsk, 2016, 13–21 (In Russian)