@article{VSPUI_2020_16_2_a1,
author = {G. A. Amirkhanova and A. Yu. Gorchakov and A. J. Duysenbaeva and M. A. Posypkin},
title = {Multi-start method with deterministic restart mechanism},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {100--111},
year = {2020},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a1/}
}
TY - JOUR AU - G. A. Amirkhanova AU - A. Yu. Gorchakov AU - A. J. Duysenbaeva AU - M. A. Posypkin TI - Multi-start method with deterministic restart mechanism JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 100 EP - 111 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a1/ LA - ru ID - VSPUI_2020_16_2_a1 ER -
%0 Journal Article %A G. A. Amirkhanova %A A. Yu. Gorchakov %A A. J. Duysenbaeva %A M. A. Posypkin %T Multi-start method with deterministic restart mechanism %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 100-111 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a1/ %G ru %F VSPUI_2020_16_2_a1
G. A. Amirkhanova; A. Yu. Gorchakov; A. J. Duysenbaeva; M. A. Posypkin. Multi-start method with deterministic restart mechanism. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 100-111. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a1/
[1] Y. G. Evtushenko, M. A. Posypkin, “Variants of the method of non-uniform coverages for global optimization of partially integer nonlinear problems”, Doc. Academy of Sciences, 437:2 (2011), 168–172 (In Russian) | Zbl
[2] D. C. Karnopp, “Random search techniques for optimization problems”, Automatica, 1:2-3 (1963), 111–121 | DOI
[3] F. J. Solis, R. J. B. Wets, “Minimization by random search techniques”, Mathematics of operations research, 6:1 (1981), 19–30 | DOI | MR | Zbl
[4] G. Pagès, “The Quasi-Monte Carlo Method”, Numerical Probability, Springer, Cham, 2018, 95–132 | DOI | MR
[5] A. B. Owen, P. W. Glynn, Monte Carlo and Quasi-Monte Carlo methods, Springer, California, 2016, 478 pp. | MR
[6] O. Bousquet, S. Gelly, K. Kurach et al, Critical hyper-parameters: No random, no cry, 2017, arXiv: (accessed: 15.05.2019) 1706.03200
[7] J. H. Halton, “Algorithm 247: Radical-inverse quasi-random point sequence”, CACM, 7:12 (1964), 701–702 | DOI
[8] G. Muniraju, B. Kailkhura, J. Thiagarajan, P. T. Bremer, Controlled random search improves sample mining and hyper-parameter optimization, 2018, arXiv: (accessed: 15.05.2019) 1706.03200
[9] T. Gerstner, M. Griebel, “Sparse grids”, Encyclopedia of Quantitative Finance, 2010, 1–6 (accessed: 21.05.2019) | DOI
[10] I. M. Sobol, D. Asotsky, A. Kreinin, K. Kucherenko, “Construction and comparison of highdimensional Sobol' generators”, Wilmott, 2011:56 (2011), 64–79 | DOI
[11] I. M. Sobol, Points uniformly filling a multidimensional cube, Znanie, M., 1985, 125 pp. (In Russian)
[12] F. J. Hickernell, Y. Yuan, A simple multistart algorithm for global optimization, CiteSeerX Rreprint, 1997 (accessed: 10.05.2019) http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.46.1346
[13] R. Martí, J. A. Lozano, A. Mendiburu, L. Hernando, “Multi-start methods”, Handbook of Heuristics, Springer, Cham, 2016, 1–21
[14] R. Martí, J. M. Moreno-Vega, A. Duarte, “Advanced multi-start methods”, Handbook of Metaheuristics, Springer, Boston, 2010, 265–281 | DOI
[15] R. Martí, R. Aceves, M. T. Leonet et al., “Intelligent multi-start methods”, Handbook of Metaheuristics, Springer, Cham, 2019, 221–243 | DOI | MR
[16] A. Y. Gorchakov, M. A. Posypkin, “The effectiveness of local search methods in the problem of finding the minimum energy of a 2-D crystal”, Modern Information Technology and IT-education, 13:2 (2017), 97–102 (In Russian)
[17] M. D. McKay, R. J. Beckman, W. J. Conover, “Comparison of three methods for selecting values of input variables in the analysis of output from a computer code”, Technometrics, 21:2 (1979), 239–245 | MR | Zbl
[18] R. Hofer, P. Ktitzer, G. Larcher, F. Pillichshammer, “Distribution properties of generalized van der Corput-Halton sequences and their subsequences”, International Journal of Number Theory, 5:4 (2009), 719–746 | DOI | MR | Zbl
[19] J. P. Lambert, “Quasi-Monte Carlo, low discrepancy sequences, and ergodic transformations”, Journal of Computational and Applied Mathematics, 12 (1985), 419–423 | DOI | MR | Zbl
[20] H. Faure, “Discrépance de suites associées à un système de numération (en dimensions)”, Acta arithmetica, 41:4 (1982), 337–351 | DOI | MR | Zbl
[21] H. Niederreiter, Random number generation and quasi-Monte Carlo methods, CBMS-NSF Regional Conference Series in Applied Mathematics, 63, Siam, Philadelphia, 1992, 242 pp. | MR | Zbl
[22] S. A. Lurie, M. A. Posypkin, Yu. O. Solyaev, “Method of identification of scale parameters of gradient theory of elasticity on the basis of numerical experiments in flat composite structures”, International Journal of Open Information Technologies, 3:6 (2015), 1–5 (In Russian)
[23] Y. G. Evtushenko, S. A. Lurie, M. A. Posypkin, “Application of optimization methods for finding equilibrium states of two-dimensional crystals”, Computational Mathematics and Mathematical Physics, 56:12 (2016), 2032–2041 (In Russian) | Zbl
[24] G. A. Amirhanova, A. Y. Gorchakov, A. J. Dujsenbaeva, M. A. Posypkin, “Application of the exact penalty function method to the problem of minimizing the energy of a plane crystal”, XIV Intern. Asian School-Seminar “Problems of Optimizing Complex Systems” (20–31 Jule 2018, Kyrgyz Republic, Lake Issyk-Kul), IICT Publ, Almaty, 2018, 107–113 (In Russian)
[25] G. A. Amirhanova, A. Y. Gorchakov, A. J. Dujsenbaeva, “Hybridization of Monte Carlo methods, simulated annealing and local search”, III Intern. Scientific Conference “Informatics and Applied Mathematics” (26-29 September 2018, Almaty, Kazakhstan), 2018, 266–274 (In Russian)
[26] G. Amirkhanova, A. Gorchakov, A. Duysenbaeva, “The application of the methodology of fast automatic differentiation to calculate the gradient of the potential REBO (LAMMPS)”, DEStech Transactions on Computer Science and Engineering, N. optim, 2018, 103–113
[27] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics, 117:1 (1995), 1–19 | DOI | Zbl
[28] S. Plimpton, P. Crozier, A. Thompson, Lammps-large-scale atomic/molecular massively parallel simulator, Preprint No 18, Sandia National Laboratories, 2007, 43 pp.
[29] S. J. Wright, “Coordinate descent algorithms”, Mathematical Programming, 151:1 (2015), 3–34 | DOI | MR | Zbl
[30] O. V. Khamisov, M. Posypkin paper Univariate global optimization with point-dependent Lipschitz constants, AIP Conference Proceedings, 2070, AIP Publishing, 2019, 1–4
[31] O. Khamisov, M. Posypkin, A. Usov, “Piecewise linear bounding functions for univariate global optimization”, International Conference on Optimization and Applications, Springer, Cham, 2018, 170–185
[32] S. A. Piyavskii, “An algorithm for finding the absolute extremum of a function”, USSR Computational Mathematics and Mathematical Physics, 12:4 (1972), 57–67 | DOI | MR
[33] P. Hansen, B. Jaumard, Lu Shi-Hui, “Global optimization of univariate lipschitz functions: I. Survey and properties”, Mathematical Programming, 55:1-3 (1992), 251–272 | DOI | MR | Zbl
[34] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems”, Physical Review B, 39:8 (1989), 55–66 | DOI
[35] Y. G. Evtushenko, M. A. Posypkin, I. Sigal, “A framework for parallel large-scale global optimization”, Computer Science-Research and Development, 23:3-4 (2009), 211–215 | DOI
[36] I. V. Bychkov, M. O. Manzyuk, A. A. Semenov et al., “Technology for integrating idle computing cluster resources into volunteer computing projects”, 2015 5th International Workshop on Computer Science and Engineering: Information Processing and Control Engineering, WCSE 2015-IPCE, 2015, 109–114
[37] M. Posypkin, A. Usov, “Implementation and verification of global optimization benchmark problems”, Open Engineering, 7:1 (2017), 470–478 | DOI