Mots-clés : permanence
@article{VSPUI_2020_16_2_a0,
author = {A. Yu. Aleksandrov},
title = {Permanence conditions for models of population dynamics with switches and delay},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {88--99},
year = {2020},
volume = {16},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a0/}
}
TY - JOUR AU - A. Yu. Aleksandrov TI - Permanence conditions for models of population dynamics with switches and delay JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 88 EP - 99 VL - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a0/ LA - ru ID - VSPUI_2020_16_2_a0 ER -
%0 Journal Article %A A. Yu. Aleksandrov %T Permanence conditions for models of population dynamics with switches and delay %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 88-99 %V 16 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a0/ %G ru %F VSPUI_2020_16_2_a0
A. Yu. Aleksandrov. Permanence conditions for models of population dynamics with switches and delay. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 2, pp. 88-99. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_2_a0/
[1] Yu. A. Pykh, Equilibrium and stability in models of population dynamics, Nauka, M., 1983, 182 pp. (In Russian)
[2] Yu. M. Svirezhev, D. O. Logofet, Stability of biolojical communities, Nauka, M., 1978, 352 pp. (In Russian) | MR
[3] J. Hofbauer, K. Sigmund, Evolutionary games, population dynamics, Cambridge University Press, Cambridge, 1998, 323 pp. | MR | Zbl
[4] N. F. Britton, Essential mathematical biology, Springer, London–Berlin–Heidelberg, 2003, 335 pp. | MR | Zbl
[5] T. Yoshizawa, Stability theory by Liapunov's second method, The Math. Soc. of Japan, Tokyo, 1966, 223 pp. | MR
[6] S. L. Podval'nyi, V. V. Provotorov, “Start control of a parabolic system with distributed parameters on a graph”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2015, no. 3, 126–142 (In Russian)
[7] V. V. Provotorov, V. I. Ryazhskikh, Yu. A. Gnilitskaya, “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | MR
[8] A. Aleksandrov, O. Mason, “Diagonal stability of a class of discrete-time positive switched systems with delay”, IET Control Theory Applications, 12:6 (2018), 812–818 | DOI | MR
[9] F. Chen, L. Wu, Z. Li, “Permanence and global attractivity of the discrete Gilpin-Ayala type population model”, Computers and Mathematics with Applications, 53 (2007), 1214–1227 | DOI | MR | Zbl
[10] Z. Lu, W. Wang, “Permanence and global attractivity for Lotka-Volterra difference systems”, J. Math. Biol., 39 (1999), 269–282 | DOI | MR | Zbl
[11] E. Kaszkurewicz, A. Bhaya, Matrix diagonal stability in systems and computation, Birkhauser, Boston–Basel–Berlin, 1999, 267 pp. | MR
[12] F. Chen, “Some new results on the permanence and extinction of nonautonomous Gilpin-Ayala type competition model with delays”, Nonlinear Analysis: Real World Applications, 7 (2006), 1205–1222 | DOI | MR | Zbl
[13] V. I. Zubov, “Independence of evolutionary development of species from aftereffects”, Proceedings of Russian Academy of Sciences, 323:4 (1992), 632–635 (In Russian) | Zbl
[14] G. Lu, Zh. Lu, Y. Enatsu, “Permanence for Lotka-Volterra systems with multiple delays”, Nonlinear Analysis: Real World Applications, 12:5 (2011), 2552–2560 | DOI | MR | Zbl
[15] J. Bao, X. Mao, G. Yin, C. Yuan, “Competitive Lotka-Volterra population dynamics with jumps”, Nonlinear Analysis, 74 (2011), 6601–6616 | DOI | MR | Zbl
[16] C. Zhu, G. Yin, “On hybrid competitive Lotka-Volterra ecosystems”, Nonlinear Analysis, 71 (2009), 1370–1379 | DOI | MR
[17] A. Yu. Aleksandrov, E. B. Aleksandrova, A. V. Platonov, “Ultimate boundedness conditions for a hybrid model of population dynamics”, Proc. 21st Mediterranean conference on Control and Automation (June 25-28, 2013, Platanias-Chania, Crite, Greece), 2013, 622–627 | DOI
[18] A. Yu. Aleksandrov, Y. Chen, A. V. Platonov, “Permanence and ultimate boundedness for discretetime switched models of population dynamics”, Nonlinear Dynamics and Systems Theory, 14:1 (2014), 1–10 | MR | Zbl
[19] A. Yu. Aleksandrov, A. V. Platonov, “On the ultimate boundedness and permanence of solutions for a class of discree-time switched models of population dynamics”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 1, 5–16 (In Russian)
[20] Y. Nakata, Y. Muroya, “Permanence for nonautonomous Lotka-Volterra cooperative systems with delays”, Nonlinear Analysis, 11 (2010), 528–534 | DOI | MR | Zbl
[21] G. Lu, Z. Lu, X. Lian, “Delay effect on the permanence for Lotka-Volterra cooperative system”, Nonlinear Analysis, 11 (2010), 2810–2816 | DOI | MR | Zbl
[22] R. Xu, Z. Wang, “Periodic solutions of a nonautonomous predator-prey system with stage structure and time delays”, J. Comput. Appl. Math., 196 (2006), 70–86 | DOI | MR | Zbl
[23] Z. Jingru, L. Chen, “Permanence and global stability for a two-species cooperative system with time delays in a two-patch environment”, Comput. Math. Appl., 32 (1996), 101–108 | MR | Zbl
[24] R. Xu, M. A. J. Chaplain, F. A. Davidson, “Permanence and periodicity of a delayed ratiodependent predator-prey model with stage structure”, J. Math. Anal. Appl., 303 (2005), 602–621 | DOI | MR | Zbl
[25] A. Yu. Aleksandrov, A. A. Vorob'eva, E. P. Kolpak, “On the diagonal stability of some classes of complex systems”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 72–88 (In Russian) | MR
[26] D. Liberzon, A. S. Morse, “Basic problems in stability and design of switched systems”, IEEE Control Systems Magazine, 19:15 (1999), 59–70 | MR | Zbl
[27] R. Shorten, F. Wirth, O. Mason, K. Wulf, C. King, “Stability criteria for switched and hybrid systems”, SIAM Rev., 49:4 (2007), 545–592 | DOI | MR | Zbl
[28] A. Aleksandrov, O. Mason, “Absolute stability and Lyapunov-Krasovskii functionals for switched nonlinear systems with time-delay”, Journal of the Franklin Institute, 351 (2014), 4381–4394 | DOI | MR | Zbl