Determining the ability to work of the system, the structure of which is given using graph
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 1, pp. 41-49
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of algorithms for the analysis of systems of different nature, the structure of which is given using graphs of great complexity, is proposed. The analysis consists in checking the connectivity and physical realizability of the system, the structure of which is given by the graph, as well as in checking the absence of non-working loops. The proposed algorithms can be used not only to develop new systems but also to diagnose operating equipment and troubleshooting. The approach to determining the physical realizability of a graph is that first a system of basis cycles is constructed. After that it is determined whether each branch is included in one of them. The operation of the system of algorithms is demonstrated by the example of an electrical system. However, the results obtained can be extended to systems of a different nature, for example, using electromechanical analogies.
Keywords: graph, graph connectivity, fundamental cycle.
@article{VSPUI_2020_16_1_a3,
     author = {A. G. Karpov and V. A. Klemeshev and D. Yu. Kuranov},
     title = {Determining the ability to work of the system, the structure of which is given using graph},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {41--49},
     year = {2020},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a3/}
}
TY  - JOUR
AU  - A. G. Karpov
AU  - V. A. Klemeshev
AU  - D. Yu. Kuranov
TI  - Determining the ability to work of the system, the structure of which is given using graph
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 41
EP  - 49
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a3/
LA  - ru
ID  - VSPUI_2020_16_1_a3
ER  - 
%0 Journal Article
%A A. G. Karpov
%A V. A. Klemeshev
%A D. Yu. Kuranov
%T Determining the ability to work of the system, the structure of which is given using graph
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 41-49
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a3/
%G ru
%F VSPUI_2020_16_1_a3
A. G. Karpov; V. A. Klemeshev; D. Yu. Kuranov. Determining the ability to work of the system, the structure of which is given using graph. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 1, pp. 41-49. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a3/

[1] M. I. Nechepurenko, V. K. Popkov, S. M. Mainagashev, Algorithms and programs for solving problems on graphs and networks, Nauka Publ, Novosibirsk, 1990, 520 pp. (In Russian)

[2] R. Sedgewick, Algorithms in C++, Addison-Wesley Professional, Boston, 2009, 672 pp. | MR

[3] F. A. Novikov, Discrete mathematics for programmers, Piter Publ, Saint Petersburg, 2004, 368 pp. (In Russian)

[4] S. V. Kurapov, M. V. Davidovsky, “Planarity testing and constructing the topological drawing of a plane graph (DFS)”, Applied Discrete Mathematics, 2016, no. 2 (32), 100–114 (In Russian) | DOI | MR

[5] V. V. Bykova, “Measures for graph integrity: a comparative survey”, Applied Discrete Mathematics, 2014, no. 4 (26), 96–111 (In Russian)

[6] A. Yu. L'vovich, Electromechanical systems, Leningrad State University Publ, L., 1989, 296 pp. (In Russian)

[7] M. N. S. Swamy, K. Thulasiraman, Graphs, Networks, Algorithms, Wiley Interscience Publ, New York, 1981, 592 pp. | MR | Zbl