@article{VSPUI_2020_16_1_a0,
author = {S. V. Chistyakov and A. N. Kvitko and D. B. Kichinsky and M. E. Vasetsov and I. S. Uspasskaya},
title = {A system of models for constructing a progressive income tax schedule},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {4--18},
year = {2020},
volume = {16},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/}
}
TY - JOUR AU - S. V. Chistyakov AU - A. N. Kvitko AU - D. B. Kichinsky AU - M. E. Vasetsov AU - I. S. Uspasskaya TI - A system of models for constructing a progressive income tax schedule JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2020 SP - 4 EP - 18 VL - 16 IS - 1 UR - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/ LA - ru ID - VSPUI_2020_16_1_a0 ER -
%0 Journal Article %A S. V. Chistyakov %A A. N. Kvitko %A D. B. Kichinsky %A M. E. Vasetsov %A I. S. Uspasskaya %T A system of models for constructing a progressive income tax schedule %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2020 %P 4-18 %V 16 %N 1 %U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/ %G ru %F VSPUI_2020_16_1_a0
S. V. Chistyakov; A. N. Kvitko; D. B. Kichinsky; M. E. Vasetsov; I. S. Uspasskaya. A system of models for constructing a progressive income tax schedule. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 1, pp. 4-18. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/
[1] S. V. Chistyakov, M. V. Ishkhanova, Mathematical models for selection of tax scales, Textbook, Saint Petersburg University Publ., Saint Petersburg, 1998, 52 pp. (In Russian)
[2] S. V. Aleksashenko, D. A. Kiseljov, P. M. Teplukhin, E. G. Yasin, “Tax scales: functions, properties, control methods”, Economics and Mathematical Methods, 25:3 (1989), 389–395 (In Russian)
[3] R. D. Luce, H. Raiffa, Games and decisions: Introduction and critical survey, John Wiley and Sons, New York, 1957, 531 pp. | MR | Zbl
[4] H. Moulin, Theorie des jeux pour l'economie et la politique [Game theory with examples from mathematical economy], Hermann Press, Paris, 1981, 262 pp. | MR
[5] S. V. Chistyakov, I. S. Uspasskaya, A. N. Kvitko, D. B. Kichinsky, “A system of models for constructing a progressive income tax scale”, IFAC POL, 51:32 (2018), 474–478
[6] R. O. Smirnov, Modeling tools for fiscal policy of the state, Saint Petersburg University Publ, Saint Petersburg, 2009, 112 pp. (In Russian)
[7] J. A. Mirrlees, “An exploration in the theory of optimal income taxation”, Review of Economic Studies, 38:2 (1971), 175–208 | DOI | MR | Zbl
[8] D. N. Nekipelov, Distribution features and distorting effect of taxes on individual incomes in Russia, Gaidar Institute for Economic Policy, M., 2005, 175 pp. (In Russian)
[9] S. V. Chistyakov, “Conflicts through the eyes of mathematicians”, Saint Petersburg State University, 2001, no. 28(3582), 15 (In Russian)
[10] S. V. Chistyakov, A. A. Andersen, V. E. Vishnevskii, “A Game-theoretic model of a regressive profit tax”, Applied Mathematical Sciences, 9:85 (2015), 4201–4209 | DOI
[11] J. Niehans, “Zur preisbildung bei ungewissen erwartungen [Price formation with uncertain expectations]”, Schweizerische Zeitschrift für Volkswirtschaft und Statistik, 5:5 (1948), 433–456 (In German)
[12] L. J. Savage, “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl
[13] A. A. Andersen, S. V. Chistyakov, “Methodological basis for constructing an interactive system of income tax rate scale”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 9–19 (In Russian) | Zbl