A system of models for constructing a progressive income tax schedule
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 1, pp. 4-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Modernization of the system of models described earlier is presented. The new game-theoretic model of constructing the average income tax rate schedule does not assume the existence of a non-taxable minimum income, which is more consistent with the real-world practice of using income tax in recent decades. At the same time, the presented proofs of the main statements related to this model are more elementary, in particular, they do not rely on Pontryagin's maximum principle. For its part, in the new approximation model for constructing progressive income tax schedules of marginal rates, which has undergone the most radical modernization, excessively rigid nonlinear restrictions on the class of acceptable approximations are excluded, due to which, under weak assumptions about the input parameters of both models, it was possible to guarantee the non-emptiness of this class.
Keywords: progressive income tax, average tax rates schedule, game-theoretic model, marginal tax rates schedule, approximation model.
@article{VSPUI_2020_16_1_a0,
     author = {S. V. Chistyakov and A. N. Kvitko and D. B. Kichinsky and M. E. Vasetsov and I. S. Uspasskaya},
     title = {A system of models for constructing a progressive income tax schedule},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {4--18},
     year = {2020},
     volume = {16},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/}
}
TY  - JOUR
AU  - S. V. Chistyakov
AU  - A. N. Kvitko
AU  - D. B. Kichinsky
AU  - M. E. Vasetsov
AU  - I. S. Uspasskaya
TI  - A system of models for constructing a progressive income tax schedule
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2020
SP  - 4
EP  - 18
VL  - 16
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/
LA  - ru
ID  - VSPUI_2020_16_1_a0
ER  - 
%0 Journal Article
%A S. V. Chistyakov
%A A. N. Kvitko
%A D. B. Kichinsky
%A M. E. Vasetsov
%A I. S. Uspasskaya
%T A system of models for constructing a progressive income tax schedule
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2020
%P 4-18
%V 16
%N 1
%U http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/
%G ru
%F VSPUI_2020_16_1_a0
S. V. Chistyakov; A. N. Kvitko; D. B. Kichinsky; M. E. Vasetsov; I. S. Uspasskaya. A system of models for constructing a progressive income tax schedule. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 16 (2020) no. 1, pp. 4-18. http://geodesic.mathdoc.fr/item/VSPUI_2020_16_1_a0/

[1] S. V. Chistyakov, M. V. Ishkhanova, Mathematical models for selection of tax scales, Textbook, Saint Petersburg University Publ., Saint Petersburg, 1998, 52 pp. (In Russian)

[2] S. V. Aleksashenko, D. A. Kiseljov, P. M. Teplukhin, E. G. Yasin, “Tax scales: functions, properties, control methods”, Economics and Mathematical Methods, 25:3 (1989), 389–395 (In Russian)

[3] R. D. Luce, H. Raiffa, Games and decisions: Introduction and critical survey, John Wiley and Sons, New York, 1957, 531 pp. | MR | Zbl

[4] H. Moulin, Theorie des jeux pour l'economie et la politique [Game theory with examples from mathematical economy], Hermann Press, Paris, 1981, 262 pp. | MR

[5] S. V. Chistyakov, I. S. Uspasskaya, A. N. Kvitko, D. B. Kichinsky, “A system of models for constructing a progressive income tax scale”, IFAC POL, 51:32 (2018), 474–478

[6] R. O. Smirnov, Modeling tools for fiscal policy of the state, Saint Petersburg University Publ, Saint Petersburg, 2009, 112 pp. (In Russian)

[7] J. A. Mirrlees, “An exploration in the theory of optimal income taxation”, Review of Economic Studies, 38:2 (1971), 175–208 | DOI | MR | Zbl

[8] D. N. Nekipelov, Distribution features and distorting effect of taxes on individual incomes in Russia, Gaidar Institute for Economic Policy, M., 2005, 175 pp. (In Russian)

[9] S. V. Chistyakov, “Conflicts through the eyes of mathematicians”, Saint Petersburg State University, 2001, no. 28(3582), 15 (In Russian)

[10] S. V. Chistyakov, A. A. Andersen, V. E. Vishnevskii, “A Game-theoretic model of a regressive profit tax”, Applied Mathematical Sciences, 9:85 (2015), 4201–4209 | DOI

[11] J. Niehans, “Zur preisbildung bei ungewissen erwartungen [Price formation with uncertain expectations]”, Schweizerische Zeitschrift für Volkswirtschaft und Statistik, 5:5 (1948), 433–456 (In German)

[12] L. J. Savage, “The theory of statistical decision”, Journal of the American Statistical Association, 46:253 (1951), 55–67 | DOI | Zbl

[13] A. A. Andersen, S. V. Chistyakov, “Methodological basis for constructing an interactive system of income tax rate scale”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2013, no. 3, 9–19 (In Russian) | Zbl