Radionuclide images processing with the use of discrete systems
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 544-554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers digital processing of image series using the discrete systems. The problem of displacement field calculation for image sequences is presented. The mathematical model based on discrete optimization is proposed as its solution. The model reflects the discrete nature of image series acquisition. It also takes into account the intensity change along the system trajectories. The study of integral-type functional on the trajectories ensemble of the discrete system was performed, and the optimization algorithm for displacement field construction based on its results was designed. The analytical form of functional variation is obtained and the functional gradient is derived, which allows us to use directional optimization methods to find the required parameters. The algorithm can be used in digital image processing, in particular, in nuclear medicine imaging. The method example implementation for nuclear medicine image processing is considered.
Keywords: discrete systems, functional variation, optimization, image processing
Mots-clés : radionuclide images.
@article{VSPUI_2019_15_4_a9,
     author = {E. D. Kotina and E. B. Leonova and V. A. Ploskikh},
     title = {Radionuclide images processing with the use of discrete systems},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {544--554},
     year = {2019},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a9/}
}
TY  - JOUR
AU  - E. D. Kotina
AU  - E. B. Leonova
AU  - V. A. Ploskikh
TI  - Radionuclide images processing with the use of discrete systems
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 544
EP  - 554
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a9/
LA  - ru
ID  - VSPUI_2019_15_4_a9
ER  - 
%0 Journal Article
%A E. D. Kotina
%A E. B. Leonova
%A V. A. Ploskikh
%T Radionuclide images processing with the use of discrete systems
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 544-554
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a9/
%G ru
%F VSPUI_2019_15_4_a9
E. D. Kotina; E. B. Leonova; V. A. Ploskikh. Radionuclide images processing with the use of discrete systems. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 544-554. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a9/

[1] Y. I. Ryazanov V. V. Zhuravlev, “Solution of instance-based recognition problems with a large number of classes”, Papers of Academy of Science. Mathematics, 96:2 (2017), 488–490 (In Russian) | MR | Zbl

[2] Yu. I. Zhuravlev, Yu. P. Laptin, A. P. Vinogradov, N. G. Zhurbenko, O. P. Lykhovyd, O. A. Berezovskyi, “Linear classifiers and selection of informative features”, Pattern Recognition and Image Analysis, 27:3 (2017), 426–432 | DOI

[3] E. D. Kotina, “On the theory of determining displacement field on the base of transfer equation in discrete case”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2010, no. 3, 38–43 (In Russian)

[4] E. Kotina, G. Pasechnaya, “3D velocity field for heart tomography”, Proceedings of 2015 International Conference on «Stability and Control Processes» in memory of V. I. Zubov (SCP), Saint Petersburg, 2015, 646–647

[5] E. D. Kotina, V. N. Latypov, V. A. Ploskikh, “Universal system for tomographic reconstruction on GPUs”, Problems of Atomic Science and Technology, 2013, no. 6 (88), 175–178

[6] E. D. Kotina, V. A. Ploskikh, “Data processing and quantitation in nuclear medicine”, RuPAC 2012 Contributions to the Proceedings — 23rd Russian Particle Accelerator Conference, 2012, 526–528

[7] E. D. Kotina, V. A. Ploskikh, A. V. Babin, “Radionuclide methods application in cardiac studies”, Problems of Atomic Science and Technology, 88:6 (2013), 179–182

[8] E. D. Kotina, G. A. Pasechnaya, “Optical flow-based approach for the contour detection in radionuclide images processing”, Cybernetics and Physics, 3:2 (2014), 62–65

[9] B. K. P. Horn, B. G. Schunck, “Determining optical flow”, Artificial Intelligence, 17:11 (1981), 185–203 | DOI

[10] P. A. Anandan, “A computational framework and an algorithm for the measurement of visual motion”, International Journal of Computer Vision, 2 (1989), 283–310 | DOI

[11] J. Barron, D. Fleet, “Performance of optical flow techniques”, International Journal of Computer Vision, 12 (1994), 43–77 | DOI

[12] M. J. Black, P. A. Anandan, “The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields”, CVIU, 63 (1996), 75–104

[13] D. Fleet, J. Weiss, “Optical flow estimation”, Mathematical Models in Computer Vision, Ch. 15, Springer, Berlin, 2005, 239–258 | MR

[14] N. Papenberg, A. Bruhn, T. Brox et al, “Highly accurate optic flow computation with theoretically justified warping”, International Journal of Computer Vision, 67:2 (2006), 141–158 | DOI

[15] E. D. Kotina, “On convergence of block iterative methods”, The bulletin of Irkutsk State University. Series Mathematics, 3 (2012), 41–55 (In Russian) | Zbl

[16] B. D. Lucas, T. Kanade, “An iterative image registration technique with an application to stereo vision”, Proceedings of Imaging Understanding Workshop, 1981, 121–130

[17] A. Bruhn, J. Weickert, C. Schnorr, “Lucas/Kanade Meets Horn/Schunck: Combining local and global optic flow methods”, International Journal of Computer Vision, 61:3 (2005), 211–231 | DOI

[18] D. A. Ovsyannikov, Mathematical methods of beam control, Leningrad State University Publishing House, Leningrad, 1980, 228 pp. (In Russian)

[19] D. A. Ovsyannikov, Modeling and optimization of charged particle beam dynamics, Leningrad State University Publishing House, Leningrad, 1990, 312 pp. (In Russian)

[20] E. D. Kotina, “Discrete optimization problem in beam dynamics”, Nuclear Instruments and Methods in Physics Research. Section A. Accelerators, Spectrometers, Detectors and Associated Equipment, 558:1 (2006), 292–294 | DOI

[21] D. Russell, R. Koch, Sobel operator, VSD, 2013, 106 pp. (In Russian)