Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 502-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to the construction of economical explicit sixth-order numerical method for solving structurally partitioned systems of ordinary differential equations. The general form of the method, which algorithmically uses the properties of the system structure, is presented. Conditions of order six, which the parameters of the method must satisfy, are derived. The simplifying conditions are found, which reduces the large nonlinear system of order conditions to a solvable smaller system. A solution with two free parameters is obtained. Economic explicit sixth-order schemes for systems of ordinary differential equations are presented. Numerical tests to compare to known explicit sixth-order one-step methods are performed.
Keywords: order, the order conditions, simplifying conditions.
@article{VSPUI_2019_15_4_a6,
     author = {I. V. Olemskoy and N. A. Kovrizhnykh and O. S. Firyulina},
     title = {Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {502--517},
     year = {2019},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/}
}
TY  - JOUR
AU  - I. V. Olemskoy
AU  - N. A. Kovrizhnykh
AU  - O. S. Firyulina
TI  - Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 502
EP  - 517
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/
LA  - ru
ID  - VSPUI_2019_15_4_a6
ER  - 
%0 Journal Article
%A I. V. Olemskoy
%A N. A. Kovrizhnykh
%A O. S. Firyulina
%T Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 502-517
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/
%G ru
%F VSPUI_2019_15_4_a6
I. V. Olemskoy; N. A. Kovrizhnykh; O. S. Firyulina. Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 502-517. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/

[1] I. V. Olemskoy, “Modification of structural properties detection algorithm”, Vestnik of Saint Petersburg Universitety. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2006, no. 2, 55–64 (In Russian)

[2] I. V. Olemskoy, “Structural approach to the design of explicit one-stage methods”, Comput. Math. Math. Phys., 43 (2003), 918–931 | MR

[3] A. S. Eremin, I. V. Olemskoy, “An embedded method for integrating systems of structurally separated ordinary differential equations”, Comput. Math. Math. Phys., 50:3 (2010), 414–427 | DOI | MR | Zbl

[4] I. V. Olemskoy, “A fifth-order five-stage embedded method of the Dormand–Prince type”, Comput. Math. Math. Phys., 45 (2005), 1140–1150 | MR | Zbl

[5] I. V. Olemskoy, “Fifth-order four-stage method for numerical integration of special systems”, Comput. Math. Math. Phys., 42 (2002), 1135–1145 | MR

[6] I. V. Olemskoy, A. S. Eremin, A. P. Ivanov, “Sixth order method with six stages for integrating special systems of ordinary differential equations”, Proceedings 2015 International Conference on Stability and Control Processes in memory of V.I. Zubov, SCP'2015, 2015, 110–113

[7] I. V. Olemskoy, A. S. Eremin, “An embedded pair of method of orders 6(4) with 6 stages for special systems of ordinary differential equations”, International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2016, Publisher Logo Conference Proceedings, 1738, American Institute of Physics, Rodos, 2016, 160010

[8] I. V. Olemskoy, A. S. Eremin, N. A. Kovrizhnykh, “Embedded methods of order six for special systems of ordinary differential equations”, Applied Mathematical Sciences, 11:1 (2017), 31–38 | DOI

[9] I. V. Olemskoy, N. A. Kovrizhnykh, “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 14:3 (2018), 215–229 | DOI | MR

[10] A. S. Eremin, N. A. Kovrizhnykh, I. V. Olemskoy, “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics and Computation, 347 (2018), 853–864 | DOI | MR

[11] E. Hairer, S. P. Nersett, G. Wanner, Solving ordinary differential equation I: Nonstiff problems, 3 ed., Springer-Verlag, Berlin–Heidelberg, 2008, 528 pp. | MR