@article{VSPUI_2019_15_4_a6,
author = {I. V. Olemskoy and N. A. Kovrizhnykh and O. S. Firyulina},
title = {Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {502--517},
year = {2019},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/}
}
TY - JOUR AU - I. V. Olemskoy AU - N. A. Kovrizhnykh AU - O. S. Firyulina TI - Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 502 EP - 517 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/ LA - ru ID - VSPUI_2019_15_4_a6 ER -
%0 Journal Article %A I. V. Olemskoy %A N. A. Kovrizhnykh %A O. S. Firyulina %T Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 502-517 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/ %G ru %F VSPUI_2019_15_4_a6
I. V. Olemskoy; N. A. Kovrizhnykh; O. S. Firyulina. Two-parametric family of sixth order numerical methods for solving systems of ordinary differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 502-517. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a6/
[1] I. V. Olemskoy, “Modification of structural properties detection algorithm”, Vestnik of Saint Petersburg Universitety. Series 10. Applied Mathematics. Computer Sciences. Control Processes, 2006, no. 2, 55–64 (In Russian)
[2] I. V. Olemskoy, “Structural approach to the design of explicit one-stage methods”, Comput. Math. Math. Phys., 43 (2003), 918–931 | MR
[3] A. S. Eremin, I. V. Olemskoy, “An embedded method for integrating systems of structurally separated ordinary differential equations”, Comput. Math. Math. Phys., 50:3 (2010), 414–427 | DOI | MR | Zbl
[4] I. V. Olemskoy, “A fifth-order five-stage embedded method of the Dormand–Prince type”, Comput. Math. Math. Phys., 45 (2005), 1140–1150 | MR | Zbl
[5] I. V. Olemskoy, “Fifth-order four-stage method for numerical integration of special systems”, Comput. Math. Math. Phys., 42 (2002), 1135–1145 | MR
[6] I. V. Olemskoy, A. S. Eremin, A. P. Ivanov, “Sixth order method with six stages for integrating special systems of ordinary differential equations”, Proceedings 2015 International Conference on Stability and Control Processes in memory of V.I. Zubov, SCP'2015, 2015, 110–113
[7] I. V. Olemskoy, A. S. Eremin, “An embedded pair of method of orders 6(4) with 6 stages for special systems of ordinary differential equations”, International Conference of Numerical Analysis and Applied Mathematics ICNAAM 2016, Publisher Logo Conference Proceedings, 1738, American Institute of Physics, Rodos, 2016, 160010
[8] I. V. Olemskoy, A. S. Eremin, N. A. Kovrizhnykh, “Embedded methods of order six for special systems of ordinary differential equations”, Applied Mathematical Sciences, 11:1 (2017), 31–38 | DOI
[9] I. V. Olemskoy, N. A. Kovrizhnykh, “A family of sixth-order methods with six stages”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Sciences. Control Processes, 14:3 (2018), 215–229 | DOI | MR
[10] A. S. Eremin, N. A. Kovrizhnykh, I. V. Olemskoy, “An explicit one-step multischeme sixth order method for systems of special structure”, Applied Mathematics and Computation, 347 (2018), 853–864 | DOI | MR
[11] E. Hairer, S. P. Nersett, G. Wanner, Solving ordinary differential equation I: Nonstiff problems, 3 ed., Springer-Verlag, Berlin–Heidelberg, 2008, 528 pp. | MR