@article{VSPUI_2019_15_4_a2,
author = {V. S. Ermolin and T. V. Vlasova},
title = {Lyapunov's first method: estimates of characteristic numbers of functional matrices},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {442--456},
year = {2019},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a2/}
}
TY - JOUR AU - V. S. Ermolin AU - T. V. Vlasova TI - Lyapunov's first method: estimates of characteristic numbers of functional matrices JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 442 EP - 456 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a2/ LA - en ID - VSPUI_2019_15_4_a2 ER -
%0 Journal Article %A V. S. Ermolin %A T. V. Vlasova %T Lyapunov's first method: estimates of characteristic numbers of functional matrices %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 442-456 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a2/ %G en %F VSPUI_2019_15_4_a2
V. S. Ermolin; T. V. Vlasova. Lyapunov's first method: estimates of characteristic numbers of functional matrices. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 442-456. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a2/
[1] A. M. Lyapunov, The general problem of the stability of motion, Gostekhizdat, M., 1950, 472 pp. (In Russian) | MR | Zbl
[2] A. V. Ekimov, Yu. E. Balykina, M. V. Svirkin, “Analysis of attainability sets of bilinear control systems”, ICNAAM 2016, AIP Conference Proceedings, 1863, American Institute of Physics Publ. LLC, Rodos, 2017, 170012 | DOI
[3] V. S. Ermolin, “Value sets of the discrete interval length in the problem of discrete stabilization”, Avtomatika, 1995, no. 3, 15–21 | MR | Zbl
[4] V. S. Ermolin, T. V. Vlasova, “Identification of the domain of attraction”, Proceedings of SCP 2015 Conference, IEEE Publ., St. Petersburg, 2015, 9–12
[5] A. V. Zubov, “Stabilization of program motion and kinematic trajectories in dynamic systems in case of systems of direct and indirect control”, Automation and Remote Control, 68:3 (2007), 386–398 | DOI | MR | Zbl
[6] V. I. Zubov, Fluctuations in nonlinear and control systems, Sudpromgiz Publ., L., 1962, 632 pp. (In Russian) | MR
[7] V. I. Zubov, Lectures on the theory of control, 2nd ed., Lan's Publ, St. Petersburg, 2009, 496 pp. (In Russian) | MR
[8] V. V. Kozlov, S. D. Furta, “Lyapunows first method for strongly non-linear systems”, Journal of Applied Mathematics and Mechanics, 60:1 (1996), 7–18 | DOI | MR | Zbl
[9] N. G. Chetaev, The stability of motion, Gostekhizdat, M., 1955, 176 pp. (In Russian) | MR
[10] I. G. Malkin, Theory of stability of motion, Nauka, M., 1966, 530 pp. (In Russian) | MR | Zbl
[11] B. F. Bylov, R. E. Vinograd, D. M. Grobman, V. V. Nemyckij, The theory of Lyapunov characteristic numbers and their application to the theory of stability, Nauka, M., 1966, 576 pp. (In Russian) | MR
[12] B. P. Demidovich, Lectures on the mathematical theory of stability, Lan's Publ, St. Petersburg, 2008, 480 pp. (In Russian) | MR
[13] T. M. Adami, E. Best, J. J. Zhu, “Stability assessment using Lyapunov's first method”, Proceedings of the Annual Southeastern Symposium on System Theory, IEEE Publ., Huntsville, 2002, 297–301
[14] P. Masarati, A. Tamer, “Sensitivity of trajectory stability estimated by Lyapunov characteristic exponents”, Aerospace Science and Technology, 47 (2015), 501–510 | DOI
[15] V. I. Oseledets, “A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems”, Trans. Moscow Mathematical Society Journal, 19 (1968), 197–231 | MR | Zbl
[16] M. Cencini, F. Ginelli, “Lyapunov analysis: from dynamical systems theory to applications”, Journal of Physics A: Mathematical and Theoretical, 46 (2013), 250301 | DOI | MR
[17] L. S. Young, “Mathematical theory of Lyapunov exponents”, Journal of Physics A: Mathematical and Theoretical, 46:254001 (2013) | MR
[18] V. S. Ermolin, “Invariant transformations in Lyapunov's first method”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer Science. Control Processes, 2014, no. 2, 36–48 (In Russian)
[19] V. S. Ermolin, T. V. Vlasova, “A group of invariant transformations in the stability problem via Lyapunov's first method”, Proceedings of ICCTPEA 2014 Conference, IEEE Publ., St. Petersburg, 2014, 48–49