Mots-clés : HIV
@article{VSPUI_2019_15_4_a15,
author = {S. V. Sokolov and A. L. Sokolova},
title = {HIV incidence in {Russia:} {SIR} epidemic model-based analysis},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {616--623},
year = {2019},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/}
}
TY - JOUR AU - S. V. Sokolov AU - A. L. Sokolova TI - HIV incidence in Russia: SIR epidemic model-based analysis JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 616 EP - 623 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/ LA - en ID - VSPUI_2019_15_4_a15 ER -
%0 Journal Article %A S. V. Sokolov %A A. L. Sokolova %T HIV incidence in Russia: SIR epidemic model-based analysis %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 616-623 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/ %G en %F VSPUI_2019_15_4_a15
S. V. Sokolov; A. L. Sokolova. HIV incidence in Russia: SIR epidemic model-based analysis. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 616-623. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/
[1] Beyrer C., Wirtz A. L., O'Hara G., Léon N., Kazatchkine M., “The expanding epidemic of HIV-1 in the Russian Federation”, PLoS Med., 14:11 (2017), 1002462 | DOI
[2] State report “On the state of the sanitary-epidemiological well-being of the population in the Russian Federation in 2018”, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 2018, 116–120 (In Russian)
[3] Gupta R. K., Abdul-Jawad S., McCoy L. E. et al., “HIV-1 remission following CCR5$\Delta$ 32/$\Delta$32 haematopoietic stem-cell transplantation”, Nature, 568 (2019), 244–248 | DOI
[4] Kermack W. O., McKendrick A. G., “A Contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society, 1927, 700–721 | Zbl
[5] Harko T., Lobo F. S. N., Mak M. K., “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates”, Applied Mathematics and Computation, 236 (2014), 184–194 | DOI | MR | Zbl
[6] Hethcote H., “The mathematics of infectious diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI | MR | Zbl
[7] Kolesin I. D., Zhitkova E. M., Mathematical models of epidemics, Solo Publ., Saint Petersburg, 2004, 90 pp. (In Russian)
[8] Nosova E. A., “Models of control and spread of HIV-infection”, Mathematical biology and bioinformatics, 7:2 (2012), 632–675 | DOI
[9] Babadzanjanz L. K., Boyle J. A., Sarkissian D. R., Zhu J., “Parameter identification for oscillating chemical reactions modelled by systems of ordinary differential equations”, Journal of Computational Methods in Sciences and Engineering, 3:2 (2003), 223–232 | DOI | Zbl
[10] World Health Organization (accessed: August 10, 2019) https://www.who.int/news-room/fact-sheets/detail/hiv-aids
[11] UNAIDS. Ambitious treatment targets: writing the final chapter of the AIDS epidemic, UNAIDS Publ., Geneva, 2014 (accessed: August 10, 2019) https://www.unaids.org/sites/default/files/media_asset/JC2670_UNAIDS_Treatment_Targets_en.pdf
[12] Decree of the Government of the Russian Federation of October 20, 2016, no. 2203-r “On the state strategy for counteracting the spread of HIV Infection in the Russian Federation for the period until 2020 and the future” (In Russian) (accessed: August 10, 2019) http://static.government.ru/media/files/cbS7AH8vWirXO6xv7C2mySn1JeqDIvKA.pdf