HIV incidence in Russia: SIR epidemic model-based analysis
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 616-623 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of predicting the incidence rate of the human immunodeficiency virus (HIV) in Russia is considered. The official morbidity levels were taken as initial data; for numerical modelling, the SIR model was applied to take into account the birth rate, mortality, as well as chemoprophylaxis and isolation of a group of infected but not epidemically dangerous patients. The search for the coefficients of the model is examined in detail using gradient descent with an auxiliary system applied. Various scenarios of the epidemic development are estimated, depending on the percentage of the number of patients who are undergoing therapy. The consequences of achieving the goals of the UNAIDS strategy 90–90–90 (90% people who are aware of their status, 90% among them are on HIV treatment and 90% among them are virally suppressed) are described. It is shown that upon reaching the target levels of involvement of patients in anti-epidemic measures, the number of infected people can be kept within 1% of the total population with a further decrease.
Keywords: math modeling, predicting, incidence.
Mots-clés : HIV
@article{VSPUI_2019_15_4_a15,
     author = {S. V. Sokolov and A. L. Sokolova},
     title = {HIV incidence in {Russia:} {SIR} epidemic model-based analysis},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {616--623},
     year = {2019},
     volume = {15},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/}
}
TY  - JOUR
AU  - S. V. Sokolov
AU  - A. L. Sokolova
TI  - HIV incidence in Russia: SIR epidemic model-based analysis
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 616
EP  - 623
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/
LA  - en
ID  - VSPUI_2019_15_4_a15
ER  - 
%0 Journal Article
%A S. V. Sokolov
%A A. L. Sokolova
%T HIV incidence in Russia: SIR epidemic model-based analysis
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 616-623
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/
%G en
%F VSPUI_2019_15_4_a15
S. V. Sokolov; A. L. Sokolova. HIV incidence in Russia: SIR epidemic model-based analysis. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 616-623. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a15/

[1] Beyrer C., Wirtz A. L., O'Hara G., Léon N., Kazatchkine M., “The expanding epidemic of HIV-1 in the Russian Federation”, PLoS Med., 14:11 (2017), 1002462 | DOI

[2] State report “On the state of the sanitary-epidemiological well-being of the population in the Russian Federation in 2018”, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor), 2018, 116–120 (In Russian)

[3] Gupta R. K., Abdul-Jawad S., McCoy L. E. et al., “HIV-1 remission following CCR5$\Delta$ 32/$\Delta$32 haematopoietic stem-cell transplantation”, Nature, 568 (2019), 244–248 | DOI

[4] Kermack W. O., McKendrick A. G., “A Contribution to the mathematical theory of epidemics”, Proceedings of the Royal Society, 1927, 700–721 | Zbl

[5] Harko T., Lobo F. S. N., Mak M. K., “Exact analytical solutions of the Susceptible-Infected-Recovered (SIR) epidemic model and of the SIR model with equal death and birth rates”, Applied Mathematics and Computation, 236 (2014), 184–194 | DOI | MR | Zbl

[6] Hethcote H., “The mathematics of infectious diseases”, SIAM Review, 42:4 (2000), 599–653 | DOI | MR | Zbl

[7] Kolesin I. D., Zhitkova E. M., Mathematical models of epidemics, Solo Publ., Saint Petersburg, 2004, 90 pp. (In Russian)

[8] Nosova E. A., “Models of control and spread of HIV-infection”, Mathematical biology and bioinformatics, 7:2 (2012), 632–675 | DOI

[9] Babadzanjanz L. K., Boyle J. A., Sarkissian D. R., Zhu J., “Parameter identification for oscillating chemical reactions modelled by systems of ordinary differential equations”, Journal of Computational Methods in Sciences and Engineering, 3:2 (2003), 223–232 | DOI | Zbl

[10] World Health Organization (accessed: August 10, 2019) https://www.who.int/news-room/fact-sheets/detail/hiv-aids

[11] UNAIDS. Ambitious treatment targets: writing the final chapter of the AIDS epidemic, UNAIDS Publ., Geneva, 2014 (accessed: August 10, 2019) https://www.unaids.org/sites/default/files/media_asset/JC2670_UNAIDS_Treatment_Targets_en.pdf

[12] Decree of the Government of the Russian Federation of October 20, 2016, no. 2203-r “On the state strategy for counteracting the spread of HIV Infection in the Russian Federation for the period until 2020 and the future” (In Russian) (accessed: August 10, 2019) http://static.government.ru/media/files/cbS7AH8vWirXO6xv7C2mySn1JeqDIvKA.pdf