About one multistage non-antagonistic network game
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 603-615 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, a multi-step non-antagonistic game is considered. The game has a finite number of stages, at the first stage a network is formed by simultaneously choosing communication vectors, and at the next, there are simultaneous non-antagonistic games, the payoffs in which depend on the controls chosen in the previous stage, as well as the behavior in the current stage. Players, at all stages except the first, have the opportunity to modify the network by removing any of their connections. A characteristic function is constructed for the model in a new way based on the calculation of optimal controls. For the case of a one-stage subgame, the supermodularity of the characteristic function is proved. As a solution, the Shapley value is considered, a simplification of the formula for calculating the components of the Shapley value for this characteristic function is given. Also, as a solution, a subset of the core (PRD-core) is considered. Strong dynamic stability has been proved for it. Work is illustrated by an example.
Keywords: multistage games, supermodular function, Shapley value, characteristic function, strongly time consistency
Mots-clés : PRD-core.
@article{VSPUI_2019_15_4_a14,
     author = {M. A. Bulgakova and L. A. Petrosyan},
     title = {About one multistage non-antagonistic network game},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {603--615},
     year = {2019},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a14/}
}
TY  - JOUR
AU  - M. A. Bulgakova
AU  - L. A. Petrosyan
TI  - About one multistage non-antagonistic network game
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 603
EP  - 615
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a14/
LA  - ru
ID  - VSPUI_2019_15_4_a14
ER  - 
%0 Journal Article
%A M. A. Bulgakova
%A L. A. Petrosyan
%T About one multistage non-antagonistic network game
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 603-615
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a14/
%G ru
%F VSPUI_2019_15_4_a14
M. A. Bulgakova; L. A. Petrosyan. About one multistage non-antagonistic network game. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 603-615. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a14/

[1] L. A. Petrosyan, A. A. Sedakov, “Multistage network games with full information”, Mathematical game theory and applications, 1:2 (2009), 66–81 (In Russian) | Zbl

[2] M. A. Bulgakova, L. A. Petrosyan, “About strongly time-consistency of core in the network game with pairwise interactions”, Proceedings of 2016 International Conference “Stability and Oscillations of Nonlinear Control Systems”, 2016, 157–160 | MR

[3] D. Kuzyutin, M. Nikitina, “Time consistent cooperative solutions for multistage games with vector payoffs”, Operations Research Letters, 45:3 (2017), 269–274 | DOI | MR | Zbl

[4] M. A. Bulgakova, “Solutions of network games with pairwise interactions”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 15:1 (2019), 147–156 (In Russian) | DOI | MR

[5] O. L. Petrosian, E. V. Gromova, S. V. Pogozhev, “Strong time-consistent subset of core in cooperative differential games with finite time horizon”, Automation and Remote Control, 79:10 (2018), 1912–1928 | DOI | MR

[6] D. A. Wolf, V. V. Zakharov, O. L. Petrosian, “About existance of PRD-core in cooperative differential games”, Mathematical game theory and applications, 9:4 (2017), 18–38 (In Russian) | MR

[7] V. Zakharov, O-Hun Kwon, “Linear programming approach in cooperative games”, Journal of Korean Mathematical Society, 34:2 (1977), 423–435 | MR

[8] L. A. Petrosyan, A. A. Sedakov, A. A. Bochkarev, “Two-stage network games”, Mathematical game theory and applications, 5:4 (2013), 84–104 (In Russian) | Zbl

[9] M. A. Bulgakova, L. A. Petrosyan, “Cooperative network games with pairwise interactions”, Mathematical game theory and applications, 4:7 (2015), 7–18 | MR | Zbl

[10] M. A. Bulgakova, L. A. Petrosyan, “Multi-stage games with pairwise interactions on full graph”, Mathematical game theory and applications, 11:1 (2019), 3–20 (In Russian) | MR | Zbl

[11] L. A. Petrosyan, “Stability of solutions in n-person differential games”, Vestnik of Leningrad University, 1:19 (1977), 46–52

[12] L. A. Petrosyan, “About new strongly time-consistency solutions in cooperative differential games”, Proceedings of the Steklov Institute of Mathematics, 211 (1995), 335–340 | MR | Zbl