Mots-clés : polygons.
@article{VSPUI_2019_15_4_a13,
author = {L. V. Shchegoleva and R. V. Voronov and L. Sedov},
title = {The problem of a maximal weighted area of axis-parallel rectangle that covers polygons},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {592--602},
year = {2019},
volume = {15},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a13/}
}
TY - JOUR AU - L. V. Shchegoleva AU - R. V. Voronov AU - L. Sedov TI - The problem of a maximal weighted area of axis-parallel rectangle that covers polygons JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 592 EP - 602 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a13/ LA - en ID - VSPUI_2019_15_4_a13 ER -
%0 Journal Article %A L. V. Shchegoleva %A R. V. Voronov %A L. Sedov %T The problem of a maximal weighted area of axis-parallel rectangle that covers polygons %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 592-602 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a13/ %G en %F VSPUI_2019_15_4_a13
L. V. Shchegoleva; R. V. Voronov; L. Sedov. The problem of a maximal weighted area of axis-parallel rectangle that covers polygons. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 592-602. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a13/
[1] Hussain M. M., Trajcevski G., “Maximizing area-range sum for spatial shapes (MAxRS3)”, SSDBM18: 30th International Conference on Scientific and Statistical Database Management (July 9–11, 2018, Bozen-Bolzano, Italy), ACM, New York, USA, 5 pp. | DOI
[2] I. R. Shegelman, V. M. Lukashevich, Preparatory work in the national forest management system, Monograph, Publishing House Petrozavodsk State University, Petrozavodsk, 2012, 84 pp. (In Russian)
[3] J. Bentley, “Programming Pearls Algorithm design techniques”, Communications of the ACM, 27:9 (1984), 865–873 | DOI | MR
[4] P. Fischer, K. Höffgen, H. Lefmann, T. Luczak, “Approximations with axis-aligned rectangles”, Fundamentals of Computation Theory, 710 (1993), 244–255 | DOI | Zbl
[5] T. Fukuda, Y. Morimoto, S. Morishita, T. Tokuyama, “Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization”, ACM SIGMOD Record, 25:2 (1996), 13–23 | DOI | MR
[6] H. Tamaki, T. Tokuyama, “Algorithms for the maximum subarray problem based on matrix multiplication”, Interdisciplinary Information Sciences, 6:2 (2000), 99–104 | DOI | MR | Zbl
[7] T. Takaoka, “Efficient algorithms for the maximum subarray problem by distance matrix multiplication”, Electronic Notes in Theoretical Computer Science, 61 (2002), 191–200 | DOI | Zbl
[8] K. Daniels, V. Milenkovic, D. Roth, Finding the largest rectangle in several classes of polygons, Harvard University Press, Cambridge, Massachusetts, 1995, 40 pp.
[9] S. C. Nandy, B. B. Bhattacharya, “A unified algorithm for finding maximum and minimum object enclosing rectangles and cuboids”, Computers Mathematical Applications (Computers and Mathematics with Applications), 29:8 (1995), 45–61 | DOI | MR | Zbl
[10] A. Backurs, N. Dikkala, C. Tzamos, Tight hardness results for maximum weight rectangles, arXiv: (accessed: May 15, 2019) 1602.05837 | MR