Combined functional continuous method for delay differential equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 425-441 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper a combined numerical method for discrete delay differential equations is presented. The method is an embedded pair of type two explicit Runge—Kutta methods of order four: a continuous method with six stages and a stage-continuous method with seven stages. Their combination provides an effective solution of discrete delay differential equations. The combined method remains explicit for any values of the delay: for small values the stage-continuous scheme is used while for large delays a faster continuous scheme is applied. The scheme to use is chosen automatically based on whether the delay falls into the current step and a switch to the stage-continuous scheme can be made at any stage when required. The embedding of the methods lets to minimize the required number of the right-hand side function computations. The order conditions and the proof of their resolvability with the stated number of stages are presented. Tests, confirming the effectiveness of the proposed methods, are made.
Keywords: delay differential equations, continuous methods, functional continuous method, stage-continuous method.
@article{VSPUI_2019_15_4_a1,
     author = {A. S. Eremin},
     title = {Combined functional continuous method for delay differential equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {425--441},
     year = {2019},
     volume = {15},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/}
}
TY  - JOUR
AU  - A. S. Eremin
TI  - Combined functional continuous method for delay differential equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 425
EP  - 441
VL  - 15
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/
LA  - ru
ID  - VSPUI_2019_15_4_a1
ER  - 
%0 Journal Article
%A A. S. Eremin
%T Combined functional continuous method for delay differential equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 425-441
%V 15
%N 4
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/
%G ru
%F VSPUI_2019_15_4_a1
A. S. Eremin. Combined functional continuous method for delay differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 425-441. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/

[1] Erneux Th., Applied delay differential equations, Springer Science+Business Media, LLC, New York, 2009, 204 pp. | MR | Zbl

[2] H. Smith, An introduction to delay differential equations with applications to the life sciences, Springer Science+Business Media, LLC, New York, 2011, 172 pp. | MR | Zbl

[3] A. Bellen, M. Zennaro, Numerical methods for delay differential eqautions, Oxford University Press, Oxford, 2013, 396 pp. | MR

[4] N. Guglielmi, E. Hairer, “Implementing Radau IIA methods for stiff delay differential equations”, Computing, 67:1 (2001), 1–12 | DOI | MR | Zbl

[5] S. Maset, L. Torelli, R. Vermiglio, “Runge–Kutta methods for retarded functional differential equations”, Mathematical Models and Methods in Applied Sciences, 15:8 (2005), 1203–1251 | DOI | MR | Zbl

[6] E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations I: Nonstiff problems, 2 ed., 3rd corr. print, Springer-Verlag, Berlin–Heidelberg, 2008, 528 pp. | MR

[7] L. F. Shampine, “Solving ODEs and DDEs with residual control”, Applied Numerical Mathematics, 52 (2005), 113–127 | DOI | MR | Zbl

[8] B. Owren, M. Zennaro, “Derivation of efficient, continuous, explicit Runge–Kutta methods”, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1488–1501 | DOI | MR | Zbl

[9] A. S. Eremin, I. V. Olemskoi, “Vlozhennyi metod integrirovaniya sistem strukturno razdelennykh obyknovennykh differentsialnykh uravnenii”, Zhurn. vychisl. matematiki i matem. fiziki, 50:3 (2010), 434–448 | MR | Zbl

[10] I. V. Olemskoi, N. A. Kovrizhnykh, “Semeistvo shestietapnykh metodov shestogo poryadka”, Vestn. S. Peterb. un-ta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 14:3 (2018), 215–229 | MR

[11] A. S. Eremin, N. A. Kovrizhnykh et al., “Continuous extensions for structural Runge–Kutta methods”, Computational Science and Its Applications ICCSA 2017, Lecture Notes in Computer Science, 10405, eds. O. Gervasi et al., 2017, 363–378 | DOI | MR

[12] A. S. Eremin, I. V. Olemskoy, “Functional continuous Runge–Kutta methods for special systems”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015, ICNAAM 2015, AIP Conference Proceedings, 1738, 2016, 100003 | DOI

[13] A. Feldstein, K. W. Neves, “High order methods for state-dependent delay differential equations with nonsmooth solutions”, SIAM Journal of Numerical Analysis, 21:5 (1984), 844–863 | DOI | MR | Zbl

[14] A. S. Eremin, A. R. Humphries, “Efficient accurate non-iterative breaking point detection and computation for state-dependent delay differential equations”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, ICNAAM 2014, AIP Conference Proceedings, 1648, 2015, 150006 | DOI

[15] L. Tavernini, “One-step methods for the numerical solution of Volterra functional differential equations”, SIAM Journal of Numerical Analysis, 8:4 (1971), 786–795 | DOI | MR | Zbl

[16] A. Bellen, N. Guglielmi, S. Maset, M. Zennaro, “Recent trends in the numerical solution of retarded functional differential equations”, Acta Numerica, 2009, 1–110 | DOI | MR | Zbl

[17] Yu. Miyatake, “An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems”, BIT Numerical Mathematics, 54 (2014), 777–799 | DOI | MR | Zbl

[18] J. K. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977, 366 pp. | MR | Zbl

[19] A. V. Kim, i-Smooth analysis: Theory and applications, John Wiley Sons Inc, NJ, 2015, 296 pp. | MR | Zbl

[20] A. S. Eremin, “Functional continuous Runge–Kutta methods with reuse”, Applied Numerical Mathematics, 146 (2019), 165–181 | DOI | MR | Zbl

[21] C. A. H. Paul, A test set of functional differential equations, Tech. Report No 243, Manchester Centre for Computational Mathematics, University of Manchester, Manchester, Feb. 1994, 41 pp.

[22] F. M. G. Magpantay, On the stability and numerical stability of a model state dependent delay differential equation, PhD thesis, McGill University, Montreal, Quebec, Canada, 2011, 189 pp. | MR