@article{VSPUI_2019_15_4_a1,
author = {A. S. Eremin},
title = {Combined functional continuous method for delay differential equations},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {425--441},
year = {2019},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/}
}
TY - JOUR AU - A. S. Eremin TI - Combined functional continuous method for delay differential equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 425 EP - 441 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/ LA - ru ID - VSPUI_2019_15_4_a1 ER -
%0 Journal Article %A A. S. Eremin %T Combined functional continuous method for delay differential equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 425-441 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/ %G ru %F VSPUI_2019_15_4_a1
A. S. Eremin. Combined functional continuous method for delay differential equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 4, pp. 425-441. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_4_a1/
[1] Erneux Th., Applied delay differential equations, Springer Science+Business Media, LLC, New York, 2009, 204 pp. | MR | Zbl
[2] H. Smith, An introduction to delay differential equations with applications to the life sciences, Springer Science+Business Media, LLC, New York, 2011, 172 pp. | MR | Zbl
[3] A. Bellen, M. Zennaro, Numerical methods for delay differential eqautions, Oxford University Press, Oxford, 2013, 396 pp. | MR
[4] N. Guglielmi, E. Hairer, “Implementing Radau IIA methods for stiff delay differential equations”, Computing, 67:1 (2001), 1–12 | DOI | MR | Zbl
[5] S. Maset, L. Torelli, R. Vermiglio, “Runge–Kutta methods for retarded functional differential equations”, Mathematical Models and Methods in Applied Sciences, 15:8 (2005), 1203–1251 | DOI | MR | Zbl
[6] E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations I: Nonstiff problems, 2 ed., 3rd corr. print, Springer-Verlag, Berlin–Heidelberg, 2008, 528 pp. | MR
[7] L. F. Shampine, “Solving ODEs and DDEs with residual control”, Applied Numerical Mathematics, 52 (2005), 113–127 | DOI | MR | Zbl
[8] B. Owren, M. Zennaro, “Derivation of efficient, continuous, explicit Runge–Kutta methods”, SIAM Journal on Scientific and Statistical Computing, 13 (1992), 1488–1501 | DOI | MR | Zbl
[9] A. S. Eremin, I. V. Olemskoi, “Vlozhennyi metod integrirovaniya sistem strukturno razdelennykh obyknovennykh differentsialnykh uravnenii”, Zhurn. vychisl. matematiki i matem. fiziki, 50:3 (2010), 434–448 | MR | Zbl
[10] I. V. Olemskoi, N. A. Kovrizhnykh, “Semeistvo shestietapnykh metodov shestogo poryadka”, Vestn. S. Peterb. un-ta. Prikladnaya matematika. Informatika. Protsessy upravleniya, 14:3 (2018), 215–229 | MR
[11] A. S. Eremin, N. A. Kovrizhnykh et al., “Continuous extensions for structural Runge–Kutta methods”, Computational Science and Its Applications ICCSA 2017, Lecture Notes in Computer Science, 10405, eds. O. Gervasi et al., 2017, 363–378 | DOI | MR
[12] A. S. Eremin, I. V. Olemskoy, “Functional continuous Runge–Kutta methods for special systems”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015, ICNAAM 2015, AIP Conference Proceedings, 1738, 2016, 100003 | DOI
[13] A. Feldstein, K. W. Neves, “High order methods for state-dependent delay differential equations with nonsmooth solutions”, SIAM Journal of Numerical Analysis, 21:5 (1984), 844–863 | DOI | MR | Zbl
[14] A. S. Eremin, A. R. Humphries, “Efficient accurate non-iterative breaking point detection and computation for state-dependent delay differential equations”, Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014, ICNAAM 2014, AIP Conference Proceedings, 1648, 2015, 150006 | DOI
[15] L. Tavernini, “One-step methods for the numerical solution of Volterra functional differential equations”, SIAM Journal of Numerical Analysis, 8:4 (1971), 786–795 | DOI | MR | Zbl
[16] A. Bellen, N. Guglielmi, S. Maset, M. Zennaro, “Recent trends in the numerical solution of retarded functional differential equations”, Acta Numerica, 2009, 1–110 | DOI | MR | Zbl
[17] Yu. Miyatake, “An energy-preserving exponentially-fitted continuous stage Runge–Kutta method for Hamiltonian systems”, BIT Numerical Mathematics, 54 (2014), 777–799 | DOI | MR | Zbl
[18] J. K. Hale, Theory of functional differential equations, Springer-Verlag, New York, 1977, 366 pp. | MR | Zbl
[19] A. V. Kim, i-Smooth analysis: Theory and applications, John Wiley Sons Inc, NJ, 2015, 296 pp. | MR | Zbl
[20] A. S. Eremin, “Functional continuous Runge–Kutta methods with reuse”, Applied Numerical Mathematics, 146 (2019), 165–181 | DOI | MR | Zbl
[21] C. A. H. Paul, A test set of functional differential equations, Tech. Report No 243, Manchester Centre for Computational Mathematics, University of Manchester, Manchester, Feb. 1994, 41 pp.
[22] F. M. G. Magpantay, On the stability and numerical stability of a model state dependent delay differential equation, PhD thesis, McGill University, Montreal, Quebec, Canada, 2011, 189 pp. | MR