Mathematical model for evacuation people from corridor-type buildings
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 375-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article describes different techniques for calculating escape routes in cases of emergency. The article contains developed mathematical model that describes dynamic flows movement in a directed graph. Model parameters include undirected graph as a model of a building, initial flow values, flows sources and their sinks. The aim of our work was creating the model, an algorithm and software to illustrate human flows movement in cases of emergency. One of the major subtask of our work was illustration of such process in corridor-type buildings. We modelled a few real evacuation experiments performed in Petrozavodsk State University in different years. Results showed that suggested model is adequate and applicable for describing human flows movement in cases of emergency. Developed algorithm and software are applicable to work out escape routes and estimate duration of evacuation. Results obtained applicable for the following research of evacuation processes, building design and operation to achieve fire safety requirements.
Keywords: evacuation, dynamic flow, confluent flow, macroscopic model, corridor-type building.
@article{VSPUI_2019_15_3_a6,
     author = {S. V. Malodushev and A. A. Rogov and R. V. Voronov},
     title = {Mathematical model for evacuation people from corridor-type buildings},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {375--384},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/}
}
TY  - JOUR
AU  - S. V. Malodushev
AU  - A. A. Rogov
AU  - R. V. Voronov
TI  - Mathematical model for evacuation people from corridor-type buildings
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 375
EP  - 384
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/
LA  - en
ID  - VSPUI_2019_15_3_a6
ER  - 
%0 Journal Article
%A S. V. Malodushev
%A A. A. Rogov
%A R. V. Voronov
%T Mathematical model for evacuation people from corridor-type buildings
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 375-384
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/
%G en
%F VSPUI_2019_15_3_a6
S. V. Malodushev; A. A. Rogov; R. V. Voronov. Mathematical model for evacuation people from corridor-type buildings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 375-384. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/

[1] Almedia J. E., Rosetti R., Coelho A. L., Crowd simulation modeling applied to emergency and evacuation simulations using multi-agent systems, 2013, arXiv: (accessed: 20.11.2018) 1303.4692

[2] Kuligowski E. D., Peacock R. D., A review of building evacuation models — 100, Technical Note 1680, National Institute of Standards and Technology Publ., Bureau Dr., Gaithersburg, MD 20899, USA, 2005

[3] Tissera P. C., Printista M., Errecalde M. L., “Evacuation simulations using cellular automata”, JCS$\$T, 7:1 (2007), 14–20

[4] Hamacher H. W., Tjandra S. A., “Mathematical modeling of evacuation problems: A state of the art”, Pedestrian and Evacuation Dynamics, 24 (2002), 227–266

[5] Lao A., Tekomono K., Multi exit configuration of mesoscopic pedestrian simulation, arXiv: (accessed: 22.11.2018) 1609.0147

[6] Shi M., Wai Ming Lee E., Ma Y., “A newly developed mesoscopic model on simulating pedestrian flow”, Procedia Engineering, 211 (2018), 614–620 | DOI

[7] Fleischer L., Skutella M., “Quickest flows over time”, Society for Industrial and Applied Mathematics, 36:6 (2007), 1600–1630 | MR | Zbl

[8] Lin M., Jaillet P., “On the quickest flow problem in dynamic networks — A parametric min-cost flow approach”, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (San Diego, CA, USA, 2015), 1343–1356 | MR | Zbl

[9] Arumugam G. P., Augustine J., Golin J. G. et al., Optimal evacuation flows on dynamic paths with general edge capacities, 2016, arXiv: (accessed: 02.03.2017) 07208v1 [cs.DS]

[10] Malodushev S. V., Rogov A. A., “Determination of locations in corporate Wi–Fi networks”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming $\$ Computer Software, 9:1 (2016), 92–104 | Zbl

[11] Voronov R. V., “The fault-tolerant metric dimension of the king's graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 241–249 | DOI | MR

[12] Ford L. R., Fulkerson D. R., “Constructing maximal dynamic flows from static flows”, Operations Research, 6:3 (1958), 419–433 | DOI | MR | Zbl