@article{VSPUI_2019_15_3_a6,
author = {S. V. Malodushev and A. A. Rogov and R. V. Voronov},
title = {Mathematical model for evacuation people from corridor-type buildings},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {375--384},
year = {2019},
volume = {15},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/}
}
TY - JOUR AU - S. V. Malodushev AU - A. A. Rogov AU - R. V. Voronov TI - Mathematical model for evacuation people from corridor-type buildings JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 375 EP - 384 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/ LA - en ID - VSPUI_2019_15_3_a6 ER -
%0 Journal Article %A S. V. Malodushev %A A. A. Rogov %A R. V. Voronov %T Mathematical model for evacuation people from corridor-type buildings %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 375-384 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/ %G en %F VSPUI_2019_15_3_a6
S. V. Malodushev; A. A. Rogov; R. V. Voronov. Mathematical model for evacuation people from corridor-type buildings. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 375-384. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a6/
[1] Almedia J. E., Rosetti R., Coelho A. L., Crowd simulation modeling applied to emergency and evacuation simulations using multi-agent systems, 2013, arXiv: (accessed: 20.11.2018) 1303.4692
[2] Kuligowski E. D., Peacock R. D., A review of building evacuation models — 100, Technical Note 1680, National Institute of Standards and Technology Publ., Bureau Dr., Gaithersburg, MD 20899, USA, 2005
[3] Tissera P. C., Printista M., Errecalde M. L., “Evacuation simulations using cellular automata”, JCS$\$T, 7:1 (2007), 14–20
[4] Hamacher H. W., Tjandra S. A., “Mathematical modeling of evacuation problems: A state of the art”, Pedestrian and Evacuation Dynamics, 24 (2002), 227–266
[5] Lao A., Tekomono K., Multi exit configuration of mesoscopic pedestrian simulation, arXiv: (accessed: 22.11.2018) 1609.0147
[6] Shi M., Wai Ming Lee E., Ma Y., “A newly developed mesoscopic model on simulating pedestrian flow”, Procedia Engineering, 211 (2018), 614–620 | DOI
[7] Fleischer L., Skutella M., “Quickest flows over time”, Society for Industrial and Applied Mathematics, 36:6 (2007), 1600–1630 | MR | Zbl
[8] Lin M., Jaillet P., “On the quickest flow problem in dynamic networks — A parametric min-cost flow approach”, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (San Diego, CA, USA, 2015), 1343–1356 | MR | Zbl
[9] Arumugam G. P., Augustine J., Golin J. G. et al., Optimal evacuation flows on dynamic paths with general edge capacities, 2016, arXiv: (accessed: 02.03.2017) 07208v1 [cs.DS]
[10] Malodushev S. V., Rogov A. A., “Determination of locations in corporate Wi–Fi networks”, Bulletin of the South Ural State University. Series Mathematical Modelling, Programming $\$ Computer Software, 9:1 (2016), 92–104 | Zbl
[11] Voronov R. V., “The fault-tolerant metric dimension of the king's graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 241–249 | DOI | MR
[12] Ford L. R., Fulkerson D. R., “Constructing maximal dynamic flows from static flows”, Operations Research, 6:3 (1958), 419–433 | DOI | MR | Zbl