About one approach to solving the inverse problem for parabolic equation
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 323-336 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the problem of determining the coefficients in the differential equation of parabolic types and boundary conditions on the known sections of the solutions of the initial-boundary value problem. Used spectral approach based on spectral properties of the elliptic operator of the initial-boundary value problem and the methods of solving the inverse spectral problem of restoring the Sturm–Liouville operator on two sequences of the eigenvalues, that corresponding to two sets of boundary conditions. In the work presented sufficient conditions of determination of two sequences of the eigenvalues by two sets of boundary conditions and terms of the uniqueness of the solution of the inverse problem The paper considers the case where the initial-boundary value problem contains the specifics — the interval of change contains variable include a finite number of the points, where the differential equation is meaningless and replaced conditions agreement.
Keywords: parabolic system, inverse problem, the eigenvalues of boundary value problems, the poles of the analytical continuation of the Green's function.
@article{VSPUI_2019_15_3_a2,
     author = {A. P. Zhabko and K. B. Nurtazina and V. V. Provotorov},
     title = {About one approach to solving the inverse problem for parabolic equation},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {323--336},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a2/}
}
TY  - JOUR
AU  - A. P. Zhabko
AU  - K. B. Nurtazina
AU  - V. V. Provotorov
TI  - About one approach to solving the inverse problem for parabolic equation
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 323
EP  - 336
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a2/
LA  - en
ID  - VSPUI_2019_15_3_a2
ER  - 
%0 Journal Article
%A A. P. Zhabko
%A K. B. Nurtazina
%A V. V. Provotorov
%T About one approach to solving the inverse problem for parabolic equation
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 323-336
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a2/
%G en
%F VSPUI_2019_15_3_a2
A. P. Zhabko; K. B. Nurtazina; V. V. Provotorov. About one approach to solving the inverse problem for parabolic equation. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 323-336. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a2/

[1] Gasymov M. G., Levitan B. M., “Definition of a differential operator from two spectrums”, Russian Mathematical Surveys, 19:2(116) (1964), 3–63 (in Russian) | Zbl

[2] Levitan B. M., Sargsyan I. S., Introduction to spectral theory, Nauka Publ., M., 1970, 672 pp. (in Russian) | MR | Zbl

[3] Levitan B. M., Theory of generalized shift operators, Nauka Publ., M., 1973, 312 pp. (in Russian) | MR

[4] Yurko V. A., “The inverse problem for differential equations with singularity”, Differential equations, 28:8 (1992), 1355–1362 (in Russian) | MR | Zbl

[5] Yurko V. A., “On the reconstruction of the Sturm—Liouville differential operators with a feature inside the interval”, Mathematical Notes, 64:1 (1998), 143–156 (in Russian) | DOI | MR | Zbl

[6] Yurko V. A., “On boundary value problems with discontinuity conditions inside the interval”, Differential equations, 36:8 (2000), 1139–1140 (in Russian) | DOI | MR | Zbl

[7] Yurko V. A., Introduction to the theory of inverse spectral problems, Fizmatlit Publ., M., 2007, 384 pp. (in Russian)

[8] Provotorov V. V., Volkova A. S., Initial boundary value problems with distributed parameters on the graph, Nauchnaya kniga Publ., Voronezh, 2014, 188 pp. (In Russian)

[9] Vladimirov V. S., Equations of mathematical physics, Nauka Publ., M., 1971, 512 pp. (in Russian) | MR | Zbl

[10] Provotorov V. V., Eigenfunctions of boundary value problems on graphs and applications, Nauchnaya kniga Publ., Voronezh, 2008, 247 pp. (in Russian)

[11] Avdonin S., Murzabekova G., Nurtazina K., “Source identification for the differential equation with memory”, New Trends in Analysis and Interdisciplinary Applications, Trends in Mathematics, Birkhäuser, Cham, 2017, 111–120 | DOI | MR | Zbl

[12] Avdonin S., Kurasov P., “Inverse problems for quantum trees”, Inverse Problems Imag., 2:1 (2008), 3973–3991 | MR

[13] Avdonin S., Bell J., Nurtazina K., “Determining distributed parameters in a neuronal cable model on a tree graph”, Mathematic Methods in the Applied Sciences, 40:11 (2017), 3973–3991 | DOI | MR

[14] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka Publ., M., 1973, 407 pp. (in Russian) | MR

[15] Bieberbach L., Analytical continuation, Nauka Publ., M., 1967, 240 pp. (in Russian) | MR

[16] Karelin V. V., Bure V. M., Svirkin M. V., “The generalized model of information dissemination in continuous time”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:1 (2017), 74–80 (in Russian) | DOI | MR

[17] Aliseiko A. N., “Lyapunov matrices for a class of systems with an exponential core”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 228–240 (in Russian) | DOI | MR

[18] Avdonin S., Edward J., “Exact controllability for string with attached masses”, SIAM J. Control Optim., 56:2 (2018), 945–980 | DOI | MR | Zbl

[19] Provotorov V. V., Ryazhskikh V. I., Gnilitskaya Yu. A., “Unique weak solvability of a nonlinear initial boundary value problem with distributed parameters in a netlike region”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:3 (2017), 264–277 | DOI | MR

[20] Zhabko A. P., Tikhomirov O. G., Chizhova O. N., “On stabilization of a class of systems with time proportional delay”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 165–172 | DOI | MR

[21] Provotorov V. V., Provotorova E. N., “Synthesis of optimal boundary control of parabolic systems with delay and distributed parameters on the graph”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 209–224 (in Russian) | DOI | MR

[22] Provotorov V. V., Provotorova E. N., “Optimal control of the linearized Navier—Stokes system in a netlike domain”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:4 (2017), 428–441 | DOI | MR

[23] Ponomarev A. A., “Approximation of feedback in the “predictor—corrector” regulator by an explicit function”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 13:2 (2017), 193–208 (in Russian) | DOI | MR

[24] Kuptsova S. E., Kuptsov S. Yu., Stepenko N. A., “On the limiting behavior of a time-delay system's solution”, Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, 14:2 (2018), 173–182 | DOI | MR

[25] Iliashenko O., Krasnov S., Sergeev S., “Calculation of high-rise construction limitations for non-resident housing fund in megacities”, International Scientific Conference on High-Rise Construction, HRC 2017, E3S Web of Conferences, 33, 2018, 03006, 10 pp. | DOI

[26] Artemov M. A., Baranovskii E. S., Zhabko A. P., Provotorov V. V., “On a 3D model of non-isothermal flows in a pipeline network”, Journal of Physics: Conference Series, 1203 (2019), 012094 | DOI