Construction of implicit multistep methods for solving integral algebraic equations
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 310-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper discusses techniques for construction of implicit stable multistep methods for solving systems of linear Volterra integral equations with a singular matrix multiplying the leading part, which means that systems under consideration comprise Volterra equations of the first kind as well as Volterra equations of the second kind. Methods for solving first kind Volterra equations so far have been justified only for some special cases, for example, for linear equations with a kernel that does not vanish on the diagonal for all points of the segment. We present a theoretical analysis of solvability of the systems under study, single out classes of two- and three-step numerical methods of order two and three, respectively, and provide examples to illustrate our theoretical assumptions. The experimental results indicate that the stability of the methods can be controlled by some weight parameter that should be chosen from a prescribed interval to provide the necessary stability of the algorithms.
Keywords: integral algebraic equation, multistep method, stability analysis.
Mots-clés : system of Volterra equations, quadrature formulas
@article{VSPUI_2019_15_3_a1,
     author = {M. V. Bulatov and M. Hadizadeh and E. V. Chistyakova},
     title = {Construction of implicit multistep methods for solving integral algebraic equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {310--322},
     year = {2019},
     volume = {15},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/}
}
TY  - JOUR
AU  - M. V. Bulatov
AU  - M. Hadizadeh
AU  - E. V. Chistyakova
TI  - Construction of implicit multistep methods for solving integral algebraic equations
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 310
EP  - 322
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/
LA  - en
ID  - VSPUI_2019_15_3_a1
ER  - 
%0 Journal Article
%A M. V. Bulatov
%A M. Hadizadeh
%A E. V. Chistyakova
%T Construction of implicit multistep methods for solving integral algebraic equations
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 310-322
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/
%G en
%F VSPUI_2019_15_3_a1
M. V. Bulatov; M. Hadizadeh; E. V. Chistyakova. Construction of implicit multistep methods for solving integral algebraic equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 310-322. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/

[1] Brunner H., Collocation methods for Volterra integral and related functional equations, Cambridge University Press, Cambridge, 2004, 597 pp. | MR | Zbl

[2] Brunner H., Volterra integral equations: An introduction to theory and applications, Cambridge University Press, Cambridge, 2017, 402 pp. | MR | Zbl

[3] Brunner H., Van der Houwen P. J., The numerical solution of Volterra equations, Elsevier Science Ltd. Publ., Amsterdam, 1986, 604 pp. | MR

[4] Linz P., Analytical and numerical methods for Volterra equations, SIAM Publ., Philadelphia, 1985, 240 pp. | MR | Zbl

[5] Apartsyn A. S., Nonclassical linear Volterra equations of the first kind, VSP Publ., Utrecht, 2003, 168 pp. | MR | Zbl

[6] Brunner H., “1896–1996: One hundred years of Volterra integral equations of the first kind”, Applied Numerical Mathematics, 24 (1997), 83–93 | DOI | MR | Zbl

[7] Lamm P. K., “A survey of regularization methods for first-kind Volterra equations”, Surveys on Solution Methods for Inverse Problems, eds. D. Colton, H. W. Engl, H. K. Louis, J. R. McLaughlin, W. Rundell, Springer Press, Vienna, 2000, 53–82 | DOI | MR | Zbl

[8] Ten Men Yan, Approximate solution of linear Volterra equations of the first kind, PhD Thesis, V. M. Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences Publ., Irkutsk, 1985, 97 pp. (In Russian)

[9] Von Wolfersdorf L., “On identification of memory kernels in linear theory of heat conduction”, Mathematical Methods in Applied Sciences, 17:12 (1994), 919–932 | DOI | MR | Zbl

[10] Jumarhon B., Lamb W., McKee S., Tang T., “A Volterra integral type method for solving a class of nonlinear initial-boundary value problems”, Numerical Methods in Partial Differential Equations, 12:7 (1996), 265–281 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Gomilko A., “A Dirichlet problem for the biharmonic equation in a semi-infinite strip”, Journal of Engineering Mathematics, 46:4 (2003), 253–268 | DOI | MR | Zbl

[12] Liang H., Brunner H., “Integral-algebraic equations: theory of collocation methods, I”, SIAM Journal on Numerical Analysis, 51:4 (2013), 2238–2259 | DOI | MR | Zbl

[13] Zenchuk A. I., “Combination of inverse spectral transform method and method of characteristics: deformed Pohlmeyer equation”, Journal of Nonlinear Mathematical Physics, 15 (2008), 437–448 | DOI | MR | Zbl

[14] Chistyakov V. F., “On singular systems of ordinary differential equations and their integrals analogues”, Lyapunov Functions and Applications, Nauka Publ., Novosibirsk, 1987, 231–239 (in Russian) | MR

[15] Gear C. W., “Differential algebraic equations, indices, and integral algebraic equations”, SIAM Journal on Numerical Analysis, 27:6 (1990), 1527–1534 | DOI | MR | Zbl

[16] Kauthen J. P., “The numerical solution of integral-algebraic equations of index 1 by polynomial spline collocation methods”, Mathematics of Computation, 70:236 (2001), 1503–1514 | DOI | MR | Zbl

[17] Hadizadeh M., Ghoreishi F., Pishbin S., “Jacobi spectral solution for integral algebraic equations of index-2”, Applied Numerical Mathemathics, 61:1 (2011), 131–148 | DOI | MR | Zbl

[18] Pishbin S., Ghoreishi F., Hadizadeh M., “A posteriori error estimation for the Legendre collocation method applied to integral-algebraic Volterra equations”, Electronic Transactions on Numerical Analysis, 38 (2011), 327–346 | MR | Zbl

[19] Pishbin S., Ghoreishi F., Hadizadeh M., “The semi-explicit Volterra integral algebraic equations with weakly singular kernels: the numerical treatments”, Journal of Computational and Applied Mathematics, 245 (2013), 121–132 | DOI | MR | Zbl

[20] Budnikova O. S., Bulatov M. V., “Numerical solution of integral-algebraic equations of multistep methods”, Journal of Computational Mathematics and Mathematical Physics, 52:5 (2012), 691–701 | DOI | MR | Zbl

[21] Balakumar V., Murugesan K., “Numerical solution of Volterra integral-algebraic equations using block pulse functions”, Applied Mathematics and Computation, 265 (2015), 165–170 | DOI | MR

[22] Bulatov M. V., “Regularization of singular systems of Volterra integral equations”, Journal of Computational Mathematics and Mathematical Physics, 42:3 (2002), 315–320 | MR | Zbl

[23] Liang H., Brunner H., “Integral-algebraic equations: theory of collocation methods, II”, SIAM Journal on Numerical Analysis, 54:4 (2016), 2640–2663 | DOI | MR | Zbl

[24] Chistyakov V. F., Algebraic-differential operators with a finite-dimensional kernel, Nauka Publ., Novosibirsk, 1996, 278 pp. (in Russian) | MR

[25] Bulatov M. V., Chistyakov V. F., The properties of differential-algebraic systems and their integral analogues, Memorial University of Newfoundland Press, Newfoundland, 1997, 80 pp.

[26] Mehrmann V., “Index concepts for differential-algebraic equations”, Encyclopedia of Applied and Computational Mathematics, ed. B. Engquist, Springer Press, Berlin, 2012, 21 | MR

[27] Gantmacher F. R., The theory of matrices, v. I, Chelsea Publ. Company, New York, 1960, 277 pp. | MR