Construction of implicit multistep methods for solving integral algebraic equations
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 310-322
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper discusses techniques for
construction of implicit stable multistep methods for solving
systems of linear Volterra integral equations with a singular
matrix multiplying the leading part, which means that systems
under consideration comprise Volterra equations of the first kind
as well as Volterra equations of the second kind. Methods for
solving first kind Volterra equations so far have been justified
only for some special cases, for example, for linear equations
with a kernel that does not vanish on the diagonal for all points
of the segment. We present a theoretical analysis of solvability
of the systems under study, single out classes of two- and
three-step numerical methods of order two and three, respectively,
and provide examples to illustrate our theoretical assumptions.
The experimental results indicate that the stability of the
methods can be controlled by some weight parameter that should be
chosen from a prescribed interval to provide the necessary
stability of the algorithms.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
integral algebraic equation, multistep method, stability analysis.
Mots-clés : system of Volterra equations, quadrature formulas
                    
                  
                
                
                Mots-clés : system of Volterra equations, quadrature formulas
@article{VSPUI_2019_15_3_a1,
     author = {M. V. Bulatov and M. Hadizadeh and E. V. Chistyakova},
     title = {Construction of implicit multistep methods for solving integral algebraic equations},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {310--322},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/}
}
                      
                      
                    TY - JOUR AU - M. V. Bulatov AU - M. Hadizadeh AU - E. V. Chistyakova TI - Construction of implicit multistep methods for solving integral algebraic equations JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 310 EP - 322 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/ LA - en ID - VSPUI_2019_15_3_a1 ER -
%0 Journal Article %A M. V. Bulatov %A M. Hadizadeh %A E. V. Chistyakova %T Construction of implicit multistep methods for solving integral algebraic equations %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 310-322 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/ %G en %F VSPUI_2019_15_3_a1
M. V. Bulatov; M. Hadizadeh; E. V. Chistyakova. Construction of implicit multistep methods for solving integral algebraic equations. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 310-322. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a1/
