The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 300-309 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The distance function, defined by the gauge (the Minkowsky gauge function) of a convex body compact, from a point to a convex closed set is considered in a finite-dimensional space. It is known that this function is convex in the whole space. The formula of its the subdifferential is obtained. It includes the subdifferential of gauge function and the cone of feasible directions of set to which the distance is measured, taken in one of the projection points on this set. This circumstans makes it different from the subdifferentional formula received earlier by B. N. Pshenichny in which another characteristics of the objects, defined the distance function, are used. Examples of applications of the obtained formula are given. In particular, a specific form of the subdifferential formula is given for the case when the set, the gauge of which specifies the distance function, and the set to which the distance is measured are lower Lebesgue sets of convex functions.
Keywords: distance function, gauge of set, subdifferential, support function, cone of feasible directions.
@article{VSPUI_2019_15_3_a0,
     author = {V. V. Abramova and S. I. Dudov and A. V. Zharkova},
     title = {The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {300--309},
     year = {2019},
     volume = {15},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/}
}
TY  - JOUR
AU  - V. V. Abramova
AU  - S. I. Dudov
AU  - A. V. Zharkova
TI  - The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space
JO  - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
PY  - 2019
SP  - 300
EP  - 309
VL  - 15
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/
LA  - ru
ID  - VSPUI_2019_15_3_a0
ER  - 
%0 Journal Article
%A V. V. Abramova
%A S. I. Dudov
%A A. V. Zharkova
%T The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space
%J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ
%D 2019
%P 300-309
%V 15
%N 3
%U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/
%G ru
%F VSPUI_2019_15_3_a0
V. V. Abramova; S. I. Dudov; A. V. Zharkova. The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 300-309. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/

[1] Rockafellar R., Convex analysis, Princeton University Press, Princeton, New Jersey, 1970, 450 pp. | MR | Zbl

[2] Pschenichnyi B. N., Convex analysis and extremal problems, Nauka Publ., M., 1980, 319 pp. (In Russian) | MR

[3] Dunham Ch. B., “Asymmetric norms and linear approximation”, Congr. Numer., 69 (1989), 113–120 | MR | Zbl

[4] Romaguera S., Schellekens M., “Quasi-metric properties of complexity spaces”, Topology Appl., 98:1–3 (1999), 311–322 | DOI | MR | Zbl

[5] De Blasi F. S., Myjak J., “On generalized best approximation problem”, J. Approx. Theory, 94:1 (1998), 54–72 | DOI | MR | Zbl

[6] Alegre C., “Continuous operators on asymmetric normed spaces”, Acta Math. Hungar., 122:4 (2009), 357–372 | DOI | MR | Zbl

[7] Cobzas S., Functional analysis in asymmetric normed spaces, Birkhauser, Basel, 2013, 219 pp. | MR | Zbl

[8] Alimov A. R., Approximate-geometric properties of sets in normed and asymmetrically normed spaces, Lomonosov Moscow State University Press, M., 2014, 207 pp. (In Russian)

[9] Alimov A. R., “Convexity of bounded Chebyshev sets in finite-dimensional asymmetrically normed spaces”, Izv. Sarat. University (N. S.), Ser. Mathematics. Mechanics. Informatics. Journal Profile, 14:4 (2014), 489–497 (In Russian) | Zbl

[10] Ivanov G. E., Lopushanski M. S., “Approximate properties of weakly convex sets in spaces with asymmetric seminorm”, Works of Moscow Institute of Physics and Technology, 4:4 (2012), 94–104 (In Russian)

[11] Ivanov G. E., Lopushanski M. S., “Separation theorems for nonconvex sets in space with nonsymmetric seminorm”, J. Mathematical Inequalities and Applications, 20:3 (2017), 737–754 | DOI | MR | Zbl

[12] Demyanov V. F., Vasiliev L. V., Nondifferentiable optimization, Nauka Publ., M., 1981, 384 pp. (In Russian) | MR

[13] Demyanov V. F., Rubinov A. V., Elements of nonsmooth analysis and quasidifferential calculus, Optimization and investigation of operation, 23, Nauka Publ., M., 1990, 431 pp. (In Russian)

[14] Dudov S. I., “Subdifferentiability and superdifferentiability of distance functions”, Math. Notes, 61:4 (1997), 440–450 (In Russian) | DOI | MR | Zbl

[15] Dudov S. I., “Directional differentiability of the distance function”, Mat. Sb., 186:3 (1995), 29–52 (In Russian) | MR | Zbl

[16] Gorokhovik V. V., Finite-dimensional optimization problems, State University Press, Minsk, Belarus, 2007, 240 pp. (In Russian) | MR

[17] Demyanov V. F., “Conditional derivatives and exhausters in nonsmooth analysis”, Dokl. of Russian Academy Sciences, 338:6 (1999), 730–733 (In Russian)

[18] Demyanov V. F., “Exhausters of positively homogeneous function”, Optimization, 45 (1999), 13–29 | DOI | MR | Zbl