@article{VSPUI_2019_15_3_a0,
author = {V. V. Abramova and S. I. Dudov and A. V. Zharkova},
title = {The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {300--309},
year = {2019},
volume = {15},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/}
}
TY - JOUR AU - V. V. Abramova AU - S. I. Dudov AU - A. V. Zharkova TI - The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 300 EP - 309 VL - 15 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/ LA - ru ID - VSPUI_2019_15_3_a0 ER -
%0 Journal Article %A V. V. Abramova %A S. I. Dudov %A A. V. Zharkova %T The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 300-309 %V 15 %N 3 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/ %G ru %F VSPUI_2019_15_3_a0
V. V. Abramova; S. I. Dudov; A. V. Zharkova. The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 300-309. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/
[1] Rockafellar R., Convex analysis, Princeton University Press, Princeton, New Jersey, 1970, 450 pp. | MR | Zbl
[2] Pschenichnyi B. N., Convex analysis and extremal problems, Nauka Publ., M., 1980, 319 pp. (In Russian) | MR
[3] Dunham Ch. B., “Asymmetric norms and linear approximation”, Congr. Numer., 69 (1989), 113–120 | MR | Zbl
[4] Romaguera S., Schellekens M., “Quasi-metric properties of complexity spaces”, Topology Appl., 98:1–3 (1999), 311–322 | DOI | MR | Zbl
[5] De Blasi F. S., Myjak J., “On generalized best approximation problem”, J. Approx. Theory, 94:1 (1998), 54–72 | DOI | MR | Zbl
[6] Alegre C., “Continuous operators on asymmetric normed spaces”, Acta Math. Hungar., 122:4 (2009), 357–372 | DOI | MR | Zbl
[7] Cobzas S., Functional analysis in asymmetric normed spaces, Birkhauser, Basel, 2013, 219 pp. | MR | Zbl
[8] Alimov A. R., Approximate-geometric properties of sets in normed and asymmetrically normed spaces, Lomonosov Moscow State University Press, M., 2014, 207 pp. (In Russian)
[9] Alimov A. R., “Convexity of bounded Chebyshev sets in finite-dimensional asymmetrically normed spaces”, Izv. Sarat. University (N. S.), Ser. Mathematics. Mechanics. Informatics. Journal Profile, 14:4 (2014), 489–497 (In Russian) | Zbl
[10] Ivanov G. E., Lopushanski M. S., “Approximate properties of weakly convex sets in spaces with asymmetric seminorm”, Works of Moscow Institute of Physics and Technology, 4:4 (2012), 94–104 (In Russian)
[11] Ivanov G. E., Lopushanski M. S., “Separation theorems for nonconvex sets in space with nonsymmetric seminorm”, J. Mathematical Inequalities and Applications, 20:3 (2017), 737–754 | DOI | MR | Zbl
[12] Demyanov V. F., Vasiliev L. V., Nondifferentiable optimization, Nauka Publ., M., 1981, 384 pp. (In Russian) | MR
[13] Demyanov V. F., Rubinov A. V., Elements of nonsmooth analysis and quasidifferential calculus, Optimization and investigation of operation, 23, Nauka Publ., M., 1990, 431 pp. (In Russian)
[14] Dudov S. I., “Subdifferentiability and superdifferentiability of distance functions”, Math. Notes, 61:4 (1997), 440–450 (In Russian) | DOI | MR | Zbl
[15] Dudov S. I., “Directional differentiability of the distance function”, Mat. Sb., 186:3 (1995), 29–52 (In Russian) | MR | Zbl
[16] Gorokhovik V. V., Finite-dimensional optimization problems, State University Press, Minsk, Belarus, 2007, 240 pp. (In Russian) | MR
[17] Demyanov V. F., “Conditional derivatives and exhausters in nonsmooth analysis”, Dokl. of Russian Academy Sciences, 338:6 (1999), 730–733 (In Russian)
[18] Demyanov V. F., “Exhausters of positively homogeneous function”, Optimization, 45 (1999), 13–29 | DOI | MR | Zbl