The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space
    
    
  
  
  
      
      
      
        
Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 300-309
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The distance function, defined by the
gauge (the Minkowsky gauge function) of a  convex body compact,
from a point to a convex closed set is considered in a
finite-dimensional space. It is known that this function is convex
in the whole space. The formula of its the subdifferential is
obtained. It includes the subdifferential of gauge function and
the cone of feasible directions of set to which the distance is
measured, taken  in one of the projection points on this set. This
circumstans makes it different from the subdifferentional formula
received earlier by B. N. Pshenichny in which another
characteristics of the objects, defined the distance function, are
used. Examples of applications of the obtained formula are given.
In particular, a specific form of the subdifferential formula is
given for the case when the set, the gauge of which specifies the
distance function, and the set to which the distance is measured
are lower Lebesgue sets of convex functions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
distance function, gauge of set, subdifferential, support function, cone of feasible directions.
                    
                  
                
                
                @article{VSPUI_2019_15_3_a0,
     author = {V. V. Abramova and S. I. Dudov and A. V. Zharkova},
     title = {The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space},
     journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
     pages = {300--309},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/}
}
                      
                      
                    TY - JOUR AU - V. V. Abramova AU - S. I. Dudov AU - A. V. Zharkova TI - The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 300 EP - 309 VL - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/ LA - ru ID - VSPUI_2019_15_3_a0 ER -
%0 Journal Article %A V. V. Abramova %A S. I. Dudov %A A. V. Zharkova %T The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 300-309 %V 15 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/ %G ru %F VSPUI_2019_15_3_a0
V. V. Abramova; S. I. Dudov; A. V. Zharkova. The formula for the subdifferential of the distance function to a convex set in an nonsymmetrical space. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 3, pp. 300-309. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_3_a0/
