Mots-clés : ontologies.
@article{VSPUI_2019_15_2_a6,
author = {A. Silva and A. Lozkins and L. R. Bertoldi and S. Rigo and V. M. Bure},
title = {Semantic {Textual} {Similarity} on {Brazilian} {Portuguese:} {An} approach based on language-mixture models},
journal = {Vestnik Sankt-Peterburgskogo universiteta. Prikladna\^a matematika, informatika, processy upravleni\^a},
pages = {235--244},
year = {2019},
volume = {15},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a6/}
}
TY - JOUR AU - A. Silva AU - A. Lozkins AU - L. R. Bertoldi AU - S. Rigo AU - V. M. Bure TI - Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models JO - Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ PY - 2019 SP - 235 EP - 244 VL - 15 IS - 2 UR - http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a6/ LA - en ID - VSPUI_2019_15_2_a6 ER -
%0 Journal Article %A A. Silva %A A. Lozkins %A L. R. Bertoldi %A S. Rigo %A V. M. Bure %T Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models %J Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ %D 2019 %P 235-244 %V 15 %N 2 %U http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a6/ %G en %F VSPUI_2019_15_2_a6
A. Silva; A. Lozkins; L. R. Bertoldi; S. Rigo; V. M. Bure. Semantic Textual Similarity on Brazilian Portuguese: An approach based on language-mixture models. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaâ matematika, informatika, processy upravleniâ, Tome 15 (2019) no. 2, pp. 235-244. http://geodesic.mathdoc.fr/item/VSPUI_2019_15_2_a6/
[1] Gomaa W. H., Fahmy A. A., “A survey of text similarity approaches”, Intern. Journal of Computer Applications, 68:13 (2013), 13–18 | DOI
[2] Freire J., Pinheiro V., Feitosa D., “LEC UNIFOR no ASSIN: FlexSTS-Um framework para Similaridade Semantica Textual”, PROPOR-Intern. conference on the Computational Processing of Portuguese (Tomar, Portugal, 2016) (accessed: 03.08.2018) http://proper206.di.fc.ul.pt/
[3] Barbosa L., Cavalin P., Kormaksson M., Guimaraes V., “Blue man mroup at ASSIN: Using distributed representations for semantic similarity and entailment recognition”, PROPOR-Intern. conference on the Computational Processing of Portuguese (Tomar, Portugal, 2016) (accessed: 03.08.2018) http://proper206.di.fc.ul.pt/
[4] Ferreira R., Lins R. D., Simske S. J., Freitas F., Riss M., “Assessing sentence similarity through lexical, syntactic and semantic analysis”, Computer Speech $\$ Language, 39 (2016), 1–28 | DOI
[5] Hartmann N. S., “Solo queue at ASSIN: Combinando abordagens tradicionais e emergentes”, Linguamática, 8:2 (2016), 59–64
[6] Cer D., Diab M., Agirre E., Lopez-Gazpio I., Specia L., Semeval-2017 Task 1: Semantic Textual Similarity-multilingual and cross-lingual focused evaluation, 2017, arXiv: 1708.00055 | DOI
[7] Hartmann N., Fonseca E., Shulby C., Treviso M., Rodrigues J., Aluisio S., Portuguese word embeddings: Evaluating on word analogies and natural language tasks, arXiv: 1708.06025
[8] Silva A., Rigo S., Alves I. M., Barbosa J., “Avaliando a similaridade sem{â}ntica entre frases curtas através de uma abordagem híbrida”, Proceedings of the 11th Brazilian Symposium in Information and Human Language Technology (Uberl{â}ndia, 2017), 93–102
[9] Pradhan N., Gyanchandani M., Wadhvani R., “A review on text Similarity Technique used in IR and its application”, Intern. Journal of Computer Applications, 120:9 (2015), 29–34 | DOI
[10] Chen F., Lu C., Wu H., Li M., “A semantic similarity measure integrating multiple conceptual relationships for web service discovery”, Expert Systems with Applications, 67 (2017), 19–31 | DOI
[11] Berrahou S. L., Buche P., Dibie J., Roche M., “Xart: Discovery of correlated arguments of $n$-ary relations in text”, Expert Systems with Applications, 73 (2017), 115–124 | DOI
[12] Ferreira R., Cavalcanti G. D., Freitas F., Lins R. D., Simske S. J., Riss M., “Combining sentence similarities measures to identify paraphrases”, Computer Speech $\$ Language, 47 (2018), 59–73 | DOI
[13] Yanaka H., Mineshima K., Martinez-Gomez P., Bekki D., Determining Semantic Textual Similarity using natural deduction proofs, 1707, arXiv: 1707.08713
[14] Kajiwara T., Bollegala D., Yoshida Y., Kawarabayashi K. I., “An iterative approach for the global estimation of sentence similarity”, PloS one, 12:9 (2017), e0180885 | DOI
[15] Brychcín T., Svoboda L., “UWB at Semeval-2016 Task 1: Semantic Textual Similarity using lexical, syntactic, and semantic information”, Proceedings of the 10th Intern. Workshop on Semantic Evaluation (SemEval-2016) (San Diego, 2016), 588–594
[16] Kashyap A., Han L., Yus R., Sleeman J., Satyapanich T., Gandhi S., Finin T., “Robust semantic text similarity using LSA, machine learning, and linguistic resources”, Language Resources and Evaluation, 50:1 (2016), 125–161 | DOI
[17] Oliveira Alves A., Rodrigues R., Gon{ç}alo Oliveira H., “ASAPP: Alinhamento Sem{â}ntico Automático de Palavras aplicado ao Portugu{ê}s (eng. ASAPP: Automatic semantic alignment for phrases applied to portuguese)”, Linguamática, 8:2 (2016), 43–58 | MR
[18] Cavalcanti A. P., de Mello R. F. L., Ferreira M. A. D., Rolim V. B., Tenório J. V. S., “Statistical and semantic features to measure sentence similarity in Portuguese”, 2017 Brazilian conference on Intelligent Systems (BRACIS), IEEE, 342–347
[19] Mikolov T., Chen K., Corrado G., Dean J., Efficient estimation of word representations in vector space, 2013, arXiv: 1301.3781
[20] Fialho P., Marques R., Martins B., Coheur L., Quaresma P., Measuring Semantic Similarity and Recognizing Textual Entailment, INESC-ID@ASSIN
[21] Faruqui M., Tsvetkov Y., Rastogi P., Dyer C., Problems with evaluation of word embeddings using word similarity tasks, 2016, arXiv: 1605.02276
[22] Paiva V., Rademaker A., Melo G., “Openwordnet-pt: An open brazilian wordnet for reasoning”, COLING 2012 (Mumbai, 2012)
[23] Miller G. A., “WordNet: a lexical database for English”, Communications of the ACM, 38:11 (1995), 39–41 | DOI
[24] Lozkins A., Bure V. M., “The probabilistic method of finding the local-optimum of clustering”, Vestnik of Saint Petersburg University. Series 10. Applied Mathematics. Computer science. Control Processes, 2016, no. 1, 28–37